
Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering

Model Predictive Control Algorithms for

Applications with Millisecond Timescales

Hans Joachim Ferreau

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering Science

October 2011





Model Predictive Control Algorithms for

Applications with Millisecond Timescales

Hans Joachim Ferreau

Jury: Dissertation presented in partial
Prof. Dr. Paula Moldenaers, chair fulfillment of the requirements for
Dr. Paul Goulart (ETH Zürich) the degree of Doctor
Prof. Dr. Marc Van Barel in Engineering Science
Prof. Dr. Jan Swevers
Prof. Dr. Marc Moonen
Prof. Dr. Joos Vandewalle, co-promotor
Prof. Dr. Moritz Diehl, promotor

October 2011



© Katholieke Universiteit Leuven – Faculty of Engineering
Address, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

Legal depot number: D/2011/7515/105
ISBN number: 978-94-6018-404-8



Acknowledgements

I would like to thank all persons who helped me while writing this thesis. First of
all I thank my promotor Moritz Diehl and all other members of my PhD jury for
intensive personal support and scientific advice. It has been a pleasure to discuss
mathematical and algorithmic ideas and to identify challenging applications of
embedded dynamic optimisation.

Moreover, I very much appreciated the opportunity to work on software that is
open-source. In my opinion, this greatly increases its possible positive impact on
society—the main final aim of any research (at least in the longer run). Thus,
I also would like to thank everybody who supported and contributed to the
two software packages described in this thesis. In particular my colleague Boris
Houska, the other main developer of the ACADO Toolkit, and Andreas Potschka
and Christian Kirches for contributing new ideas to qpOASES. There have been
many more people that helped with beta-testing, contributing interfaces or making
real-world applications running, but I hope they do not mind if I choose to refrain
from mentioning them one by one.

During my PhD studies I enjoyed participating in two industry projects with
Hoerbiger Control Systems AB and IPCOS NV. I would like to thank the respective
persons-in-charge in Sweden and Belgium for our productive co-operations and
interesting discussions. I also thank Stephen Boyd and his research group for
hosting me three months at Stanford University.

Moreover, I gratefully acknowledge financial support of the Fonds Wetenschappelijk
Onderzoek – Vlaanderen (FWO), that granted a 4-year scholarship and covered
travel expenses.

Finally, I cordially thank my family, my fiancé Nadia, my son Felix and my yet
unborn daughter for all their love and encouragement during the last years.

i





Abstract

The last three decades have seen a rapidly increasing number of applications
where model predictive control (MPC) led to better control performance than
more traditional approaches. This thesis aims at lowering the practical burden of
applying fast MPC algorithms in the real-world. To this aim, it contributes two
software packages, which are released as open-source code in order to stimulate
their widespread use. Both packages implement previously published methods but
enrich them with a number of new theoretical and algorithmic ideas.

The first part of this thesis focusses on efficiently solving quadratic programs (QPs)
as arising in linear MPC problems. To this end, it reviews the author’s previous
work on developing an online active set strategy to exploit the parametric nature
of these QPs. This strategy is extended with ideas for initialising the solution
procedure and treating QPs with semi-definite Hessian matrices. The software
package qpOASES implements the online active set strategy and its extensions
together with a number of tailored solution variants for special QP formulations.
It offers interfaces to third-party software like Matlab/Simulink and has been
successfully used in a number of academic real-world MPC applications. Moreover,
two industrial applications of qpOASES—dealing with emission control of integral
gas engines and feasibility management for MPC in the process industry—are
described. These industrial case studies also led to further theoretical ideas,
namely the use of MPC with an asymmetric cost function and a novel method
for handling infeasible QPs based on the online active set strategy.

The second part addresses nonlinear MPC problems and presents the ACADO Tool-

kit, a new software environment and algorithm collection for automatic control
and dynamic optimisation. It has been designed for setting-up nonlinear optimal
control and MPC problems in a user-friendly way and solving them efficiently. In
particular, the ACADO Toolkit implements two algorithmic variants of the real-
time iteration scheme: a Gauss-Newton approach for nonlinear MPC formulations
involving a tracking objective function as well as an exact Hessian approach for
tackling time-optimal formulations. The underlying QP subproblems are solved
by means of the online active set strategy. The ACADO Toolkit features an

iii



iv

intuitive symbolic syntax for formulating MPC problems, which offers a couple of
advantageous possibilities. Most importantly, it allows the user to automatically
generate optimised, highly efficient C code that is tailored to each respective MPC
problem formulation. Numerical results show that the exported code exhibits a
promising computational performance allowing application of nonlinear MPC to
non-trivial processes at kilohertz sampling rates.

Key words: model predictive control, numerical optimal control, dynamic
optimisation, embedded optimisation, parametric quadratic programming, online
active set strategy, infeasibility handling, real-time iteration algorithm, code
generation, open-source software, qpOASES, ACADO Toolkit



Nomenclature

Selected Symbols

Model Predictive Control

A, B, C, D state space matrices describing a linear ODE system

c, cterm, r possibly nonlinear constraint functions

ε slack variable

f right-hand side describing nonlinear system dynamics

h output function of nonlinear system dynamics

M, N matrices describing linear constraints

np length of discrete-time prediction horizon

npa number of parameters

nu number of control inputs

nx number of differential states

ny number of outputs

p vector of parameters

P, Q, R weighting matrices of a tracking objective function

ψ Lagrange term of objective function

φ Mayer term of objective function

t time

tp length of prediction horizon (fixed)

T length of prediction horizon (free)

Tp prediction horizon

Tdisc
p discrete-time prediction horizon

v



vi

u vector of control inputs

w0 initial process state

x vector of differential states

y vector of outputs

Quadratic and Nonlinear Programming

A(x̌) index set of active constraints at point x̌

b, bB, bB, bC, bC constraint vectors

CRA critical region of an optimal active-set A

E slack variable

F NLP objective function

F , F(w) feasible set of a (parametric) QP/NLP

g QP gradient vector

G QP constraint matrix or function defining NLP equalities

H QP Hessian matrix or function defining NLP inequalities

I(x̌) index set of inactive constraints at point x̌

m number of QP constraints

n number of QP/NLP variables

nG number of NLP equality constraints

nH number of NLP inequality constraints

P set of feasible parameters of a parametric QP/NLP

q parameter for control parameterisation

s parameter for state discretisation

τ homotopy parameter or time instant of discretisation grid

V function within least-squares objective

w varying parameter

x,xopt (optimal) primal QP variables

X ,Xopt (optimal) primal NLP variables

y, yopt (optimal) dual QP variables

λ,λopt (optimal) dual NLP variables, equality constraints

µ,µopt (optimal) dual NLP variables, inequality constraints



vii

Mathematical Expressions

0 real matrix of appropriate dimensions with all elements zero

2
M power set of set M

D domain of a real function

In n-dimensional identity matrix

N set of natural numbers (greater than 0)

O(·) big-O notation describing limiting behaviour

π ratio of any circle’s circumference to its diameter

R field of real numbers

R≥0 set of nonnegative real numbers

R>0 set of positive real numbers

Rn set of real n-dimensional vectors

Rm×n set of real m× n-dimensional matrices

Sn set of real symmetric n× n-matrices

Sn�0 set of real symmetric positive semi-definite n× n-matrices

Sn≻0 set of real symmetric positive definite n× n-matrices

∞ infinity

∀ for all

∃ there exist

∅ empty set

[·, ·] closed interval of real numbers

(·, ·) open interval of real numbers

·
def
= · defines the symbol on the left to equal the expression on

the right

· ← · assigns the value of the variable on the left to the variable

on the right

ḟ(t) first derivative of function f with respect to time t

∇f gradient vector of function f

M ′ transpose of vector or matrix M

M−1 inverse of regular matrix M

|·| absolute value of a real number or cardinality of a set

‖·‖2 Euclidean norm of a matrix or vector



viii

Abbreviations and Acronyms

Besides common expressions and SI units the following abbreviations and
acronyms are used:

AD automatic differentiation

BDF backward differentiation formulae

BFGS Broyden-Fletcher-Goldfarb-Shanno

CP convex program

CPU central processing unit

CSTR continuous stirred tank reactor

DAE differential algebraic equation

GMRES generalised minimal residual method

HJB Hamilton-Jacobi-Bellmann

iff if and only if

IP interior-point

LGPL Lesser General Public License

LICQ linear independence constraint qualification

LP linear program

KKT Karush-Kuhn-Tucker

MIMO multiple input multiple output

min minimise

MPC model predictive control

NLP nonlinear programming (problem)

NMPC nonlinear model predictive control

ODE ordinary differential equation

PLC programmable logic controller

QP quadratic programming (problem)

rpm revolutions per minute

RK Runge-Kutta

RTI real-time iteration

SISO single input single output

SQP sequential quadratic programming

s. t. subject to



Contents

Contents ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . 5

I Linear Model Predictive Control 13

2 Overview of Existing Methods for Linear MPC 15

2.1 Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Parametric Quadratic Programming . . . . . . . . . . . . . 19

2.1.4 Remark on State-Elimination . . . . . . . . . . . . . . . . . 21

2.2 Explicit Solution Methods . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Main Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x CONTENTS

2.2.2 Approximate Methods . . . . . . . . . . . . . . . . . . . . . 24

2.3 Iterative Solution Methods . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Active-Set Methods . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Further Iterative Approaches . . . . . . . . . . . . . . . . . 29

2.3.4 Combinations of Explicit and Iterative Methods . . . . . . 30

3 Fast Linear MPC using the Online Active Set Strategy 31

3.1 The Online Active Set Strategy . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Real-Time Variant . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Initialisation of the Homotopy . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Initialisation Strategies . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Obtaining Good Initial Guesses . . . . . . . . . . . . . . . . 40

3.3 Extension to Multiply Linearised MPC . . . . . . . . . . . . . . . . 41

3.4 Regularisation Procedure for Convex QPs . . . . . . . . . . . . . . 43

4 The Open-Source Implementation qpOASES 47

4.1 Overview of the Software Package . . . . . . . . . . . . . . . . . . 47

4.1.1 Algorithmic Description . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.3 Software Design . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.4 Computational Complexity . . . . . . . . . . . . . . . . . . 53

4.2 Solution Variants for QPs with Special Properties . . . . . . . . . . 54

4.2.1 Box Constraints . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Trivial Hessian Matrix . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Positive Semi-Definite Hessian Matrix . . . . . . . . . . . . 56

4.2.4 Many Constraints . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS xi

4.2.5 Sparse QP Matrices . . . . . . . . . . . . . . . . . . . . . . 57

4.2.6 Varying QP Matrices . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Numerical Modifications to Increase Reliability . . . . . . . . . . . 58

4.3.1 Dealing with Rounding Errors and Ill-Conditioning . . . . . 59

4.3.2 Dealing with Ties . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Interfaces and Applications . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Interfaces for Matlab, Octave, Scilab and YALMIP . . . . . 61

4.4.2 Running qpOASES on dSPACE and xPC Target . . . . . . 62

4.4.3 Real-World Applications . . . . . . . . . . . . . . . . . . . . 62

4.5 Numerical Performance . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2 Computational Efficiency . . . . . . . . . . . . . . . . . . . 64

5 Practical Issues and Industrial Case Studies 67

5.1 Industrial Case Study I: Emission Control of Integral Gas Engines 67

5.1.1 MPC of Integral Gas Engines . . . . . . . . . . . . . . . . . 68

5.1.2 Software for Embedded Optimisation . . . . . . . . . . . . . 70

5.1.3 Linear MPC of Wiener Systems . . . . . . . . . . . . . . . . 72

5.2 Industrial Case Study II: MPC Feasibility Management in the
Process Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Infeasibility Handling for Linear MPC . . . . . . . . . . . . 77

5.2.2 Handling of Prioritised Constraints . . . . . . . . . . . . . . 79

5.2.3 Infeasibility Handling using the Online Active Set Strategy 80

II Nonlinear Model Predictive Control 85

6 Overview of Existing Methods for Nonlinear MPC 87

6.1 Tackling the Infinite-Dimensional Optimisation Problem . . . . . . 87

6.1.1 Indirect and Hamilton-Jacobi-Bellman Approaches . . . . . 88



xii CONTENTS

6.1.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Definitions and Optimality Conditions . . . . . . . . . . . . 92

6.2.2 Newton-Type Optimisation . . . . . . . . . . . . . . . . . . 93

6.2.3 Sequential Quadratic Programming . . . . . . . . . . . . . . 94

6.2.4 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . 96

6.3 Numerical Optimal Control . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Solving Linearised Subproblems . . . . . . . . . . . . . . . . 98

6.3.2 Derivative Computation . . . . . . . . . . . . . . . . . . . . 99

6.3.3 Comparison of Newton-Type Optimal Control Methods . . 100

6.4 Algorithms Tailored to Nonlinear MPC . . . . . . . . . . . . . . . 102

6.4.1 Online Initialisations . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Parametric Sensitivities and Tangential Predictors . . . . . 103

6.4.3 Ideas to Reduce the Feedback Delay . . . . . . . . . . . . . 104

6.4.4 Sequential Approaches . . . . . . . . . . . . . . . . . . . . . 105

6.4.5 Simultaneous Approaches . . . . . . . . . . . . . . . . . . . 108

7 ACADO Toolkit 111

7.1 Overview of the Software Package . . . . . . . . . . . . . . . . . . 111

7.1.1 Introduction and Scope . . . . . . . . . . . . . . . . . . . . 112

7.1.2 Algorithmic Features . . . . . . . . . . . . . . . . . . . . . . 115

7.1.3 Software Design . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 MPC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Generalised Gauss-Newton Method . . . . . . . . . . . . . . 121

7.2.2 Real-Time Iteration Algorithm . . . . . . . . . . . . . . . . 124

7.2.3 Time-Optimal NMPC . . . . . . . . . . . . . . . . . . . . . 125

7.2.4 Simulation Environment . . . . . . . . . . . . . . . . . . . . 128

7.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



CONTENTS xiii

7.3.1 Start-Up of a Continuous Stirred Tank Reactor . . . . . . . 130

7.3.2 Using Fully Converged Solutions . . . . . . . . . . . . . . . 132

7.3.3 Employing the Real-Time Iteration Algorithm . . . . . . . 135

7.3.4 Computational Load of Real-Time Iterations . . . . . . . . 138

8 Code Generation for Nonlinear MPC 141

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Auto-Generated Real-Time Iteration Algorithms . . . . . . . . . . 143

8.2.1 Symbolic Problem Formulation . . . . . . . . . . . . . . . . 143

8.2.2 Integration and Sensitivity Generation . . . . . . . . . . . . 144

8.2.3 Solving the Linearised Subproblem . . . . . . . . . . . . . . 147

8.2.4 The Auto-Generated Code . . . . . . . . . . . . . . . . . . . 148

8.3 Performance of the Generated Code . . . . . . . . . . . . . . . . . 150

8.3.1 Start-Up of a CSTR (Revisited) . . . . . . . . . . . . . . . 150

8.3.2 Real-Time Control of a Kite Carousel Model . . . . . . . . 151

8.3.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Conclusions 157

9.1 Linear MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.1.2 Directions for Future Research . . . . . . . . . . . . . . . . 158

9.2 Nonlinear MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2.2 Directions for Future Research . . . . . . . . . . . . . . . . 160

Bibliography 163

List of Publications 185





List of Figures

3.1 Homotopy paths from one QP to the next across multiple critical
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Homotopy paths from one QP to the next with limited number of
active-set changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Relative error in the optimal objective function value for a collection
of non-trivial convex QPs when using the iterative regularisation
procedure for different values of ε. . . . . . . . . . . . . . . . . . . 46

4.1 UML class diagram illustrating the main functionality of qpOASES. 52

4.2 UML class diagram illustrating the matrix class hierarchy of
qpOASES in order to use tailored linear algebra routines. . . . . . . 58

4.3 Illustration of the Simulink interface of qpOASES. . . . . . . . . . 62

5.1 Integral gas engine of first industrial case study. . . . . . . . . . . . 68

5.2 Comparison of NOx emissions during a load increase: standard PLC
vs. MPC using qpOASES. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 NOx emission of the considered integral gas engine as a function of
the fuel to air ratio φ. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Piecewise linear approximation of the NOx emission within the
relevant operating range as a function of the fuel to air ratio φ. . . 76

6.1 Qualitative illustration of tangential predictors for interior-point
methods using a small κ. . . . . . . . . . . . . . . . . . . . . . . . . 106

xv



xvi LIST OF FIGURES

6.2 Qualitative illustration of tangential predictors for interior-point
methods using a larger κ. . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Qualitative illustration of generalised tangential predictors for exact
Hessian SQP methods. . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Subsequent solution approximations of the continuation/GMRES
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Subsequent solution approximations of the real-time iteration scheme.109

6.6 Subsequent solution approximations of the advanced step controller 110

7.1 UML class diagram illustrating the most important algorithmic
building blocks of the ACADO Toolkit. . . . . . . . . . . . . . . . . 120

7.2 UML class diagram illustrating a couple of user interfaces of the
ACADO Toolkit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 UML class diagram illustrating the main building blocks of the built-
in simulation environment of the ACADO Toolkit. . . . . . . . . . . 130

7.4 CSTR start-up controlled using online optimisation with fully
converged solutions: tracking NMPC, time-optimal NMPC with
α = 1, time-optimal NMPC with α = 0.5. . . . . . . . . . . . . . . 134

7.5 Runtimes in seconds for the CSTR start-up controlled using
online optimisation with fully converged solutions: tracking NMPC,
tracking NMPC using exact Hessians, time-optimal NMPC with
α = 1, time-optimal NMPC with α = 0.5. . . . . . . . . . . . . . . 135

7.6 CSTR start-up controlled using online optimisation based on a
tracking NMPC formulation: fully converged solution and solution
obtained by employing the real-time iteration scheme performing
only one Gauss-Newton iteration per sampling instant. . . . . . . . 136

7.7 CSTR start-up controlled using online optimisation based on a time-
optimal NMPC formulation with α = 1: fully converged solution
and solution obtained by employing the real-time iteration scheme
performing only one SQP iteration per sampling instant. . . . . . . 137

7.8 Runtimes in seconds for the CSTR start-up controlled using online
optimisation employing the real-time iteration scheme: track-
ing NMPC with Gauss-Newton Hessian approximation and time-
optimal NMPC with α = 1 with exact Hessian computation. . . . . 138



LIST OF FIGURES xvii

8.1 Butcher tableau for an explicit Runge-Kutta integrator of order four
for fixed step-sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Picture and sketch of the prototype kite carousel at K.U. Leuven. . 152

8.3 Simulated states and optimised control inputs of the kite carousel
together with their respective reference values. . . . . . . . . . . . 154





List of Tables

4.1 Fraction of small- to medium-scale problems from the Maros-
Mészáros test set successfully solved by the respective solver with
default settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Worst-case runtime of qpOASES (using warm-starts) and CVXGEN

when running the two nonlinear MPC scenarios of Section 8.3. . . 65

7.1 Typical runtime performance of one Gauss-Newton real-time itera-
tion when controlling the CSTR start-up using the tracking NMPC
formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Typical runtime performance of one real-time iteration with exact
Hessian computation when controlling the CSTR start-up using the
tracking NMPC formulation. . . . . . . . . . . . . . . . . . . . . . 139

7.3 Typical runtime performance of one real-time iteration with exact
Hessian computation when controlling the CSTR start-up using the
time-optimal NMPC formulation. . . . . . . . . . . . . . . . . . . . 139

8.1 Worst-case runtime for controlling the CSTR start-up when per-
forming Gauss-Newton real-time iterations based on auto-generated
code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Worst-case runtime of the auto-generated real-time iteration algo-
rithm applied to the kite carousel model (with QP warm-starts). . 154

xix





Chapter 1

Introduction

1.1 Motivation

The last three decades have seen a rapidly increasing number of applications
where control techniques based on dynamic optimisation led to improved
performance [195], e.g. maximising the process output or minimising energy
use and emissions. These techniques use a mathematical model in the form of
differential equations of the process to be controlled in order to predict its future
behaviour and to calculate optimised control actions. Sometimes this can be done
once before the runtime of the process to yield an offline controller. However,
unknown or unmodelled disturbances often call for a feedback controller that
repeatedly solves optimal control problems in real-time, i.e., during the runtime
of the process. The notion model predictive control (MPC) refers to this second
case.

MPC has a couple of advantages over traditional control approaches. Its key
feature is that the control objective as well as desired limitations on the process
behaviour can directly be specified within an optimal control problem. This mostly
avoids the use of heuristics for designing the controller and also facilitates its tuning.
Mathematical optimisation techniques are then used to obtain control actions
that are optimal solutions of such optimal control problems. Moreover, MPC
problem formulations can also directly include predictive information, allowing
the controller to react pro-actively to future changes in the setup. Finally, MPC
naturally handles processes with multiple inputs or outputs as it conceptually
can be used with dynamic models of any dimension. These advantages come
at the expense that optimal control problems need to be solved in real-time—
possibly on embedded controller hardware. This becomes particularly challenging

1



2 INTRODUCTION

if the controlled process dynamics are fast and thus require a controller that
provides feedback at high sampling rates, like in many mechanical or automotive
applications.

What makes solving MPC problems challenging? The answer is twofold: if the
model features nonlinear dynamics, the resulting optimisation problem typically
becomes nonconvex. Thus, the optimal solution might not be unique and,
moreover, many sub-optimal local solutions might exist. This fact complicates
both the solution procedure, resulting in higher computational load, and the
theoretical analysis of the closed-loop behaviour of the process. Second, even
if a linear dynamic model leads to a convex problem with unique optimal solution,
solving it reliably within short sampling times—below a millisecond, say—is still
computationally demanding for non-trivial systems. Besides the computational
issues, a lot of effort has been spent to investigate theoretical properties of MPC
algorithms. Among them, stability analysis has been by far the most important
one, but also feasibility issues or guaranteed bounds on the computational runtime
have been investigated. According to [198], several hundred articles on MPC have
been published each year during the last decade. This sheds some light on the
relevance of MPC and also gives rise to the hope that MPC theory is getting
mature (in particular for the linear case).

The main objective of this thesis is to lower the practical burden of applying
fast MPC algorithms in the real world. To this aim, it contributes two
software packages: First, the quadratic programming solver qpOASES designed
for solving linear MPC problems very efficiently, which has already been used
for two industrial and numerous academic real-world applications. Second, the
ACADO Toolkit for setting up and solving nonlinear MPC problems in a user-
friendly way, which also offers the possibility to automatically generate optimised,
highly efficient C code. Both packages implement previously published methods
but enrich them with a number of new theoretical and algorithmic ideas. They
are released as open-source code in order to stimulate their widespread use. All
contributions of this thesis are discussed in more detail in the following section.

A last but important remark concerns the practical relevance of the topic and its
possible benefits for the society. Though it is hard to predict the future (lacking
a sufficiently accurate model of the world), there is some evidence that MPC will
be able to contribute to some of mankind’s main future challenges: Given the fact
that MPC is already nowadays applied by many chemical companies to reduce
energy and raw material consumption without jeopardising product quality, it will
play its role in saving natural resources. Also increasing individual mobility calls
for automatic control methods like MPC, not only to save fuel or reduce emissions,
but also to realise new innovations such as autonomous driving. Yet another
example is the health care sector, where possible benefits of MPC are currently
investigated in pilot-projects, e.g. to optimally dose insulin injections.



CONTRIBUTION 3

1.2 Contribution

This thesis is divided into two parts focussing on algorithms for linear (Chapters
2–5) and nonlinear MPC (Chapters 6–8), respectively. We briefly summarise each
chapter and mention their respective contribution.

Part I: Linear Model Predictive Control

• Chapter 2 surveys existing numerical methods for solving linear MPC
problems. It discusses a number of iterative solution methods and methods
that explicitly pre-compute the solution as well as combinations of both. Also
a basic introduction to quadratic programming (QP) is given, as basically
all mentioned linear MPC methods rely on solving QP problems.

• Chapter 3 starts with reviewing the author’s previous work on developing an
online active set strategy [75, 77] for solving QPs arising in linear MPC very
efficiently. Afterwards, novel ideas to initialise the online active set strategy
are described, which can substantially speed-up QP solution in case a good
initial guess for the optimal solution is available. Also the presented idea of
combining the online active set strategy with a proximal point method to
obtain an efficient regularisation scheme for solving convex QPs is new.

• Chapter 4 presents the main contribution of the first part of this thesis,
namely a proper implementation of the online active set strategy within
the open-source software qpOASES. It builds on the ad-hoc implementation
mentioned in [77] but improves it in many important ways: greatly enhanced
reliability and maintainability of the code, tailored solution variants for a
number of special QP formulations to increase efficiency, several interfaces
to frequently used third-party software packages and a detailed user’s
manual. Effectiveness and usability of the implementation is confirmed by
mentioning a number of academic real-world applications of qpOASES, partly
on embedded controller hardware. Finally, it is shown that qpOASES can
significantly outperform other popular academic and commercial QP solvers
on small- to medium-scale test examples.

• Chapter 5 discusses several practical issues motivated by the use of qpOASES

within two industrial case studies. The first case study describes the use
of qpOASES on embedded controller hardware for reducing the emissions
of integral gas engines. In this context, the use of linear MPC with
an asymmetric cost function is proposed to improve control performance
for processes described by Wiener models. The second case study briefly
discusses MPC infeasibility handling for linear MPC applications in the
process industry. For this aim, qpOASES has been integrated into an existing



4 INTRODUCTION

commercial MPC software suite. Moreover, a novel strategy to efficiently
handle infeasible QPs based on the online active set strategy is proposed.

Part II: Nonlinear Model Predictive Control

• Chapter 6 summarises existing techniques to transform an infinite-dimensional
optimal control problem into a finite-dimensional nonlinear programming
problems (NLPs) by means of direct methods. It discusses the two main
classes of methods, namely sequential quadratic programming and interior-
point methods, for solving these specially structured NLPs and how these
methods need to be adapted to work efficiently. Finally, a survey of existing
algorithms for nonlinear MPC is given.

• Chapter 7 introduces the newly developed open-source software package
ACADO Toolkit. It provides a general and flexible framework for using a
number of algorithms for dynamic optimisation, including nonlinear MPC.
Moreover, it is able to directly handle symbolic problem formulations,
which not only allows for a user-friendly syntax to setup optimisation
problems but also provides interesting algorithmic possibilities (like the code
generation and optimisation tool described in Chapter 8). This symbolic
syntax and its flexible software design are distinguishing features of the
ACADO Toolkit compared to other existing optimisation software packages.
The ACADO Toolkit has been developed jointly with Boris Houska, who is
the main author of the symbolic expression classes and the algorithms for
solving offline optimal control problems. The implementation of algorithms
for nonlinear MPC constitutes the first main contribution of the second part
of this thesis. In particular, two previously proposed variants of the real-
time iteration scheme to handle MPC formulations—that either comprise a
tracking objective function or aim at time-optimal process behaviour—have
been implemented within the ACADO Toolkit.

• Chapter 8 introduces the idea to automatically generate optimised source-
code of optimisation algorithms for speeding-up computations. Following
this approach, a novel software tool to automatically export real-time
iteration algorithms for use in nonlinear MPC is presented. This tool has
been implemented as an add-on to the ACADO Toolkit and can thus make use
of its symbolic syntax to setup the MPC problem. That way the symbolic
problem formulation is used to export highly efficient and self-contained
C code that is tailored to each respective MPC problem. It is illustrated
that automatically generated NMPC algorithms can perform significantly
faster than their counterparts implemented in a generic way—at least on
small-scale NMPC examples. The ACADO Code Generation tool has been
developed jointly with Boris Houska and is the second main contribution of
the second part of this thesis.



MODEL PREDICTIVE CONTROL 5

A motivation for the research carried out in this thesis is given in Chapter 1, where
also its contributions are summarised. Moreover, it introduces the mathematical
framework to formulate linear and nonlinear MPC problems. Chapter 9 concludes
the thesis and discusses possible topics of future research.

1.3 Model Predictive Control

Model predictive control (MPC) repeatedly calculates control actions which
optimise the forecasted process behaviour. The prediction is based on a dynamic
model of the process to be controlled. At each sampling instant, this leads to
an optimal control problem which needs to be solved online. Afterwards, the
optimised control action is applied to the process until the next sampling instant
when an updated optimal control problem, incorporating the new process state, is
solved. Hence, model predictive control is a feedback control strategy, sometimes
also referred to as receding horizon control. A thorough introduction can be found
in several textbooks, e.g. [46, 165].

Unless otherwise stated, in this thesis we consider time-continuous process models
described by an ordinary differential equation (ODE) and an output function. We

assume the process model to be defined over a time interval T
def
= [tstart, tend] ⊂ R,

and to have the following form:

x(tstart) = w0 , (1.1a)

ẋ(t) = f
(
t, x(t), u(t), p

)
∀ t ∈ T , (1.1b)

y(t) = h
(
t, x(t), u(t), p

)
∀ t ∈ T , (1.1c)

with differential states x : T → Rnx , control inputs (or manipulated variables)
u : T → Rnu , time-constant parameters p ∈ Rnpa , and outputs, or controlled
variables, y : T → Rny . Moreover, w0 ∈ Rnx is the initial value of the differential
states, f : Df ⊆ R × Rnx × Rnu × Rnpa → Rnx the right-hand function of the
ODE, and h : Dh ⊆ R × Rnx × Rnu × Rnpa → Rny denotes the output function
of the process model.

There exists a great variety of different model types within the MPC context. They
can be roughly divided into first principles (or white-box) models, identified (or
black-box) models, or combinations of both (often called grey-box models). First
principles models try to replicate, e.g., physical or chemical laws of nature, whereas
identified models are based on measurements of the real process. Examples for
different model types and their application in industry can be found in [195].



6 INTRODUCTION

Based on dynamic models of form (1.1), we introduce

Definition 1.1 (optimal control problem): An optimal control problem over

the prediction horizon Tp
def
= [t0, t0 + tp], with tp ∈ R>0, is the task of finding

optimal control inputs u(t) solving

OCP(t0, w0) : min
x(·),u(·),

y(·),p

t0+tp∫

t0

ψ
(
t, y(t), u(t), p

)
dt + φ

(
t0+tp, x(t0+tp), p

)

(1.2a)

s. t. x(t0) = w0 , (1.2b)

ẋ(t) = f
(
t, x(t), u(t), p

)
∀ t ∈ Tp , (1.2c)

y(t) = h
(
t, x(t), u(t), p

)
∀ t ∈ Tp , (1.2d)

0 ≥ c
(
t, y(t), u(t), p

)
∀ t ∈ Tp , (1.2e)

0 ≥ cterm
(
t0 + tp, x(t0 + tp), p

)
, (1.2f)

where w0 denotes the initial process state at the starting time t0. It aims
at minimising an objective function comprising a Lagrange term ψ : Dψ ⊆
R × Rny × Rnu × Rnpa → R (sometimes called the “running cost”) and a Mayer
term φ : Dφ ⊆ R × Rny × Rnpa → R (or “terminal cost”), respectively.
Moreover, optimisation can be subject to inequality constraints defined by the path
constraints c : Dc ⊆ R× Rny × Rnu × Rnpa → Rnc and the terminal constraints
cterm : Dcterm ⊆ R× Rnx × Rnpa → Rnc,term . �

The capability to enforce constraints on the control inputs, outputs or parameters
is one of the most important features of MPC. Also additional equality constraints
can be expressed using this formulation.

Let us assume that the process to be controlled by means of MPC starts at time
instant tstart, ends at time instant tend and that

t(0) def
= tstart < t(1) < . . . < t(nsample) def

= tend , nsample ∈ N , (1.3)

is a sequence of sampling instants satisfying t(i) − t(i−1) ≤ tp for all i ∈
{1, . . . , nsample}. If the sampling instants are chosen equidistant, i.e.

δ
def
=

tend − tstart

nsample
, t(i)

def
= tstart + i · δ ∀ i ∈ {1, . . . , nsample} , (1.4)

we call δ ∈ R>0 the sampling time.



MODEL PREDICTIVE CONTROL 7

Having solved OCP(t(i), w0), the optimal control input uopt(t) is applied to the
process until the next sampling instant t(i+1). Then the current process state is
obtained (measured or estimated) and the optimal control problem OCP(t(i+1), w0)
is solved with this updated initial value for the process state. This yields the model
predictive control scheme which is summarised in Algorithm 1.1.

Algorithm 1.1 (model predictive control concept)

input: (open-loop) optimal control problem OCP(t(0), w0),

sequence of sampling instants t(0), t(1), . . . , t(nsample−1) as in (1.3)

output: piecewise defined optimised process inputs u∗ : [tstart, tend] → Rnu

(1) Set i← 0.

(2) Obtain process state w0 at time t(i) and formulate OCP(t(i), w0).

(3) Obtain uopt(t), t ∈ [t(i), t(i) + tp], by solving OCP(t(i), w0).

(4) Set u∗(t)
def
= uopt(t) ∀ t ∈ [t(i), t(i+1)] and apply u∗(t) to the process until

t(i+1).

(5) Stop if i = nsample − 1, otherwise set i← i+ 1 and continue with step (2).

One may ask why it is necessary to solve the optimal control problem repeatedly:

If one would choose tp
def
= tend − tstart, it would suffice to solve the first problem

OCP(tstart, w0) and to apply the resulting optimal control for all times in
[tstart, tend]. This objection is justified if one assumes that the model describes
the real process exactly and that all inputs can be applied to the real process
instantaneously.

However, these conditions are never satisfied in a real-world setup: there are always
discrepancies between the model and real process, known as model-plant mismatch,
as the real process is too complex to be modelled exactly. Sometimes the process
dynamics are not even known completely making approximations or interpolations
necessary. Moreover, unknown disturbances are almost always present in real-world
and measurement noise1 impedes the exact determination of the initial process
state. On the other hand, the calculated optimal control inputs often cannot be
applied exactly to the real process. Since actuators, valves and even electronic

1We should emphasise that the current process state w0 is never known exactly in practice
since it has to be obtained by means of more or less inaccurate sensors.



8 INTRODUCTION

devices need a short time period, known as dead time, to react, there is always
a short delay when applying the optimal control inputs (although this could be
counteracted by prediction). A further delay stems from the fact that the controller
needs time to calculate new optimised control inputs. And even if these delays are
negligible, deviations between the optimised and the applied control inputs may
occur because the actuators are not able to behave like the optimised function u(t)
possibly including discontinuities.

Without loss of generality, we eliminate the explicit dependencies of ψ, φ, f , h, c
on t and p for ease of notation:

• Most presentations on MPC require the process model to be time-invariant.
Explicit time-dependence can be eliminated by introducing an additional
state xnx+1(t) and the additional differential equation:

xnx+1(t0) = t0 , (1.5a)

ẋnx+1(t) = 1 ∀ t ∈ T . (1.5b)

• Also parameters can be written as differential states by introducing
additional states xnx+i(t), 1 ≤ i ≤ npa, and imposing the additional
equations:

xnx+i(t0) = pi ∀ i ∈ {1, . . . , npa} , (1.6a)

ẋnx+i(t) = 0 ∀ t ∈ T ∀ i ∈ {1, . . . , npa} . (1.6b)

We end our general introduction to model predictive control with the following
frequently used definition:

Definition 1.2 (steady-state): Every pair (x̌, ǔ) satisfying

0 = f
(
x̌, ǔ

)
(1.7)

is called a steady-state of the ODE system ẋ(t) = f
(
x(t), u(t)

)
. �

This means that a process is at steady-state (x̌ , ǔ) if and only if it remains there
when input ǔ is applied.

Special Case: Linear Model Predictive Control

The first part of this thesis deals with a special case of the general MPC setup
introduced so far, namely linear MPC. It refers to situations in which a linear



MODEL PREDICTIVE CONTROL 9

time-invariant process model, linear constraints and a convex quadratic objective
function is used. This does not imply that the real process to be controlled is
governed by linear dynamics.

A (continuous-time) process model is called linear time-invariant if it can be
written in the form

x(tstart) = w0 , (1.8a)

ẋ(t) = Ax(t) +Bu(t) ∀ t ∈ T , (1.8b)

y(t) = Cx(t) +Du(t) ∀ t ∈ T , (1.8c)

with constant matrices2 A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu .
Since most real processes exhibit nonlinearities, linear process models are often
obtained by linearising a nonlinear model at some working point (normally at a
steady-state) or by employing system identification techniques [161].

Based on linear dynamic models of form (1.8), we introduce

Definition 1.3 (linear optimal control problem): A linear optimal control

problem over the prediction horizon Tp
def
= [t0, t0 + tp], with tp ∈ R>0 fixed, is

the task of finding optimal control inputs u(t) solving

OCPlin(t0, w0) : min
x(·),u(·),

y(·)

t0+tp∫

t0

ŷ(t)′Qŷ(t) + û(t)′Rû(t) dt + x̂(t0 + tp)′P x̂(t0 + tp)

(1.9a)

s. t. x(t0) = w0 , (1.9b)

ẋ(t) = Ax(t) +Bu(t) ∀ t ∈ Tp , (1.9c)

y(t) = Cx(t) +Du(t) ∀ t ∈ Tp , (1.9d)

b(t) ≥ M(t)y(t) +N(t)u(t) ∀ t ∈ Tp , (1.9e)

where we introduce the definitions x̂(t)
def
= x(t) − xref(t), ŷ(t)

def
= y(t) − yref(t)

and û(t)
def
= u(t) − uref(t). We aim at minimising the convex quadratic objective

function given by constant matrices Q ∈ S
ny

�0, R ∈ Snu
≻0, P ∈ S

ny

�0 and possibly time-

varying reference values xref : R → Rnx , yref : R → Rny and uref : R → Rnu .
Moreover, optimisation can be subject to linear inequality constraints defined by

2Linear time-variant process models allow for time-varying matrices A(t), B(t), C(t), D(t).



10 INTRODUCTION

possibly time-varying matrices M : R → Rnc×ny , N : R → Rnc×nu and upper
bound vector b : R → Rnc. �

Linear MPC problems with this type of objective are often referred to as reference

(or trajectory) tracking problems. In the special case of y(t)
def
= x(t) ∀ t ∈ T as well

as yref def
= 0 and uref def

= 0, they aim at regulating the process to the origin. The
matrices Q and R penalise deviations of the process outputs from desired reference
values; whereas P is included for stability reasons (see e.g. [221, 143, 29, 50, 171]
and the references therein).

As a special case of (1.9e), many linear MPC formulations comprise box-
constraints of the form

u ≤ u(t) ≤ u ∀ t ∈ Tp , (1.10a)

y ≤ y(t) ≤ y ∀ t ∈ Tp , (1.10b)

where u, u ∈ Rnu and y, y ∈ Rny . Input bounds typically express physical
limitations of the actuators, output bounds are often necessary to ensure safe
process operating conditions.

Problem Discretisation

If u(t) is allowed to be an arbitrary measurable real-valued function, both
OCP(t0, w0) and OCPlin(t0, w0) constitute infinite dimensional (over R) optimisa-
tion problems. Although there exist necessary conditions—based on the calculus of
variations or Pontryagin’s maximum principle [124], [192]—for finding the optimal
solution of such problems, these so-called indirect methods are often of limited use
for MPC purposes (cf. [22, p. 85-87]). In contrast, direct methods parameterise
the control functions in order to reduce the optimal control problem to a finite-
dimensional one. This loss of degrees of freedom greatly simplifies the solution of
the problem and is most often irrelevant for process performance in practice. A
very popular control parameterisation is to require that the control functions are
piecewise constant (or piecewise linear) on an equidistant grid.

Introducing a control parameterisation allows one to express the state and
output trajectories x(t) and y(t) as functions of the initial value w0 and
finitely many optimisation variables representing the control inputs. Also the
constraints need to be discretised and their fulfilment is ensured only at a finite
number of time instants, e.g. at the grid points of the control parameterisation.
Similarly, the continuous objective function is evaluated on a discrete time-grid
only. That way the optimal control problem OCP(t0, w0) is transformed into a
nonlinear programming problem (NLP) with a nonlinear objective function and



MODEL PREDICTIVE CONTROL 11

possibly nonlinear constraints. In the linear MPC case, the optimal control
problem OCPlin(t0, w0) is transformed into a quadratic programming problem (QP)
comprising a convex quadratic objective function and linear constraints. A brief
overview on direct methods is given in Subsection 6.1.2.

If we parameterise the control inputs as piecewise constant functions on an
equidistant grid and evaluate the objective function and constraints on this grid
only, we end up with

Definition 1.4 (discrete-time linear optimal control problem): A discrete-
time linear optimal control problem over the discrete-time prediction horizon

Tdisc
p

def
= {k0, . . . , k0 + np − 1}, with np ∈ N fixed, is the task of finding a sequence

of constant optimal control inputs uk0 , . . . , uk0+np−1 solving

OCPdisc
lin (k0, w0) : min

xk0
,...,xk0+np

,

yk0
,...,yk0+np

,

uk0
,...,uk0+np−1

k0+np−1∑

k=k0

ŷ′
kQŷk + û′

kRûk + x̂′
k0+np

P x̂k0+np

(1.11a)

s. t. xk0 = w0 , (1.11b)

xk+1 = Adiscxk +Bdiscuk ∀ k ∈ Tdisc
p , (1.11c)

yk = Cxk +Duk ∀ k ∈ Tdisc
p , (1.11d)

bk ≥ Mkyk +Nkuk ∀ k ∈ Tdisc
p , (1.11e)

bk0+np ≥ Mk0+npxk0+np , (1.11f)

where all quantities, except for Adisc ∈ Rnx×nx and Bdisc ∈ Rnx×nu , are defined
analogously to Definition 1.3. �

The discrete-time system matrices Adisc and Bdisc can be easily calculated from
their time-continuous counterparts (see e.g. [91]). The label “disc” is usually left
out for ease of notation.

Definition 1.4 implies that the control inputs can vary along the whole prediction
horizon on the same grid as the discretised differential states. In contrast to this, it
is sometimes advantageous to use a control horizon that is a subset of the discrete-
time prediction horizon Tdisc

p . A common choice is to let the control inputs vary
only on a few intervals at the beginning of the prediction horizon and to fix them
to a given value on all remaining intervals of Tdisc

p .





Part I

Linear
Model Predictive Control

13





Chapter 2

Overview of Existing Methods
for Linear MPC

This chapter introduces the main concepts of quadratic programming and gives
an overview of existing numerical methods to solve linear MPC problems. This
survey comprises a number of iterative solution methods, methods that explicitly
pre-compute the solution as well as combinations of both.

2.1 Quadratic Programming

We introduce quadratic programming (QP) problems and show that discrete-time
linear optimal control problems form a special, highly structured class of QPs.
Efficient solution of these QPs in real-time is a key ingredient for fast linear MPC
schemes. Moreover, several algorithms for nonlinear MPC rely on fast solutions of
QP subproblems.

2.1.1 Definitions

We start by concisely summarising a couple of basic definitions:

Definition 2.1 (quadratic program): The optimisation problem

QP : min
x∈Rn

1

2
x′Hx+ x′g (2.1a)

s. t. Gx ≥ b , (2.1b)

15



16 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

with the Hessian matrix H ∈ Sn
def
= {M ∈ Rn×n | M = M ′}, the gradient vector

g ∈ Rn, the constraint matrix G ∈ Rm×n, and the constraint vector b ∈ Rm, is
called a quadratic program. �

Other equivalent definitions of a quadratic program exist. We only note that also
equality constraints, bounds on single variables xi, 1 ≤ i ≤ n, or upper constraint
limits can be expressed by means of the inequality constraints (2.1b) using a proper
choice of G and b.

We denote the i-th row of the constraint matrix G by the row-vector G′
i. The

matrix composed of the rows corresponding to constraints in any (ordered) index
set A ⊆ {1, . . . ,m} is denoted by GA; the corresponding part of the constraint
vector b is denoted by bA.

For describing basic properties of QPs, we introduce the following

Definition 2.2 (feasible, bounded and convex QPs): A quadratic program
of the form (2.1) is called

• feasible iff its feasible set

F
def
=
{
x̌ ∈ Rn | Gx̌ ≥ b

}
(2.2)

is non-empty and infeasible otherwise;

• bounded (from below) iff there exists a number α ∈ R such that

α ≤
1

2
x̌′Hx̌+ x̌′g ∀ x̌ ∈ F (2.3)

and unbounded otherwise;

• convex iff its Hessian matrix H is symmetric positive semi-definite, i.e.

H ∈ Sn�0 , Sn�0
def
=
{
M ∈ Sn | v′Mv ≥ 0 ∀ v ∈ Rn

}
(2.4)

and nonconvex otherwise;

• strictly convex iff its Hessian matrix H is symmetric positive definite, i.e.

H ∈ Sn≻0 , Sn≻0
def
=
{
M ∈ Sn | v′Mv > 0 ∀ v ∈ Rn \ {0}

}
. (2.5)

�

It is trivial to see that every strictly convex QP is also bounded from below.
Moreover, the Frank-Wolfe Theorem states that every strictly convex QP always
has a solution if it is feasible [89].

For analysing the solution of a QP, it is often appropriate to follow [70] introducing



QUADRATIC PROGRAMMING 17

Definition 2.3 (dual quadratic program): We define the dual quadratic pro-
gram of a QP (2.1) to be the problem

QPdual : max
x∈Rn, y∈Rm

− 1
2x

′Hx+ y′b (2.6a)

s. t. Hx+ g = G′y , (2.6b)

y ≥ 0 , (2.6c)

where all quantities are defined as in Definition 2.1.

The notions of feasibility, boundedness and convexity (cf. Definition 2.2) also apply
to the dual QP; its feasible set is defined as

Fdual def
=
{

(x̌, y̌) ∈ Rn | Hx̌+ g = G′y̌, y̌ ≥ 0
}
, (2.7)

accordingly. �

2.1.2 Optimality Conditions

Duality is an important concept in linear programming and convex quadratic
programming [70] that also has extensions to general nonlinear programming [249].
The main idea is to formulate a second, dual problem which can be shown (under
mild conditions) to have the same optimal objective function value as the original,
primal one. This and other theoretical properties are very helpful when proving
optimality of a certain point and also lead to interesting practical methods for
solving quadratic programs, as will be described in Section 2.3.

Since an extensive treatment of duality is beyond the scope of this thesis, we only
summarise the main result [70]:

Theorem 2.1 (solution of primal and dual QP): Let a convex primal and
the corresponding dual quadratic program (as defined in Definitions 2.1 and 2.3)
be given. Then the following holds:

(i) If xopt is a solution to QP (2.1) then a solution (xopt, yopt) to QPdual exists.

(ii) If a solution (xopt, yopt) to QPdual exists, then a solution x to QP (2.1)
satisfying Hx = Hxopt exists.

(iii) In either case

1

2

(
xopt

)
′H
(
xopt

)
+
(
xopt

)
′g = −

1

2

(
xopt

)
′H
(
xopt

)
+
(
yopt

)
′b

holds. �



18 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

Note that the second proposition simplifies to x = xopt if the QP is strictly convex
(implying that H is invertible). Using Theorem 2.1 it is easy to show that the
objective function value of the dual QP at any feasible point provides a lower
bound on the optimal objective function value of the primal QP. Another straight-
forward corollary is that a strictly convex QP is feasible if and only if its dual is
bounded from above.

In order to formulate explicit optimality conditions for QPs, we need the following
definitions:

Definition 2.4 (active and inactive constraints): Let a feasible QP of the
form (2.1) be given. A constraint G′

ix̌ ≥ bi, 1 ≤ i ≤ m, is called active at
x̌ ∈ F iff G′

ix̌ = bi holds and inactive otherwise. The (disjoint) index sets

A(x̌)
def
=

{
i ∈ {1, . . . ,m} | G′

ix̌ = bi
}
,

I(x̌)
def
=

{
i ∈ {1, . . . ,m} | G′

ix̌ > bi
}

are called set of active constraints, or more common active set, at x̌ and set of
inactive constraints at x̌, respectively. If xopt is an optimal solution of the QP, we
call the corresponding active set A(xopt) the optimal active set. �

Now we can state the following optimality conditions which are special variants of
the general nonlinear case (cf. [142, 151]):

Theorem 2.2 (Karush-Kuhn-Tucker conditions for QPs): Let QP (2.1) be
a strictly convex and feasible quadratic program. Then there exists a unique xopt ∈
Rn and at least one index set A ⊆ A(xopt) and a vector yopt ∈ Rm which satisfy
the following conditions:

Hxopt −G′
Ay

opt
A

= −g , (2.8a)

GAx
opt = bA , (2.8b)

GIx
opt ≥ bI , (2.8c)

yopt
I

= 0 , (2.8d)

yopt
A

≥ 0 , (2.8e)

where I
def
= i ∈ {1, . . . ,m} \ A. Furthermore,

(i) xopt is the unique global minimiser of the primal QP (2.1),

(ii) (xopt, yopt) is an optimal solution of the dual QP (2.6), and



QUADRATIC PROGRAMMING 19

(iii) the optimal objective function values of primal and dual QP are equal. �

Proof: Virtually any textbook on optimisation shows that the KKT conditions
are necessary and sufficient to characterise solutions of a convex QP, see e.g. [40].
The existence of a (unique) primal solution of strictly convex QPs is guaranteed
by the before-mentioned Frank-Wolfe theorem. �

Note that neither the set A nor the dual solution yopt are necessarily unique.
However, if all rows of the matrix GA are linearly independent for a fixed A, yopt

is uniquely determined by Equations (2.8a) and (2.8b) [178]. If A = A(xopt),
the condition that GA has full row rank is called linear independence constraint
qualification (LICQ).

2.1.3 Parametric Quadratic Programming

Definition 2.1 of a quadratic program can be extended to QPs whose gradient and
constraint vectors can depend affinely on a given parameter. We will see that
this extension is perfectly suited to describe QPs given by a discrete-time linear
optimal control problem formulation (1.9).

Definition 2.5 (parametric quadratic program): The optimisation problem

QPH,G(w) : min
x∈Rn

1

2
x′Hx+ x′g(w) (2.9a)

s. t. Gx ≥ b(w) , (2.9b)

with fixed matrices H ∈ Rn×n, G ∈ Rm×n and vectors

g(w)
def
= f + Fw , (2.10a)

b(w)
def
= e+ Ew , (2.10b)

depending on a varying parameter w ∈ Rnx is called a parametric quadratic
program (with f ∈ Rn, F ∈ Rn×nx , e ∈ Rm, E ∈ Rm×nx). For fixed
matrices that are known from the context, we often just write QP(w) for notational
convenience. �

For an arbitrary but fixed w = w0 we yield an ordinary quadratic program of the
form (2.1) and therefore all definitions and results presented so far also carry over
to parametric QPs. But since the gradient vector g(w) and constraint vector b(w)
are both affine functions of the parameter w, the feasible set, its optimal solution,



20 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

the set of active and inactive constraints at a feasible point as well as its dual
also depend on w. Therefore these quantities will be written as F(w), xopt(w),
A
(
xopt(w)

)
, I
(
xopt(w)

)
, and QPdual(w), respectively. However, for notational

convenience, we will often drop this dependence if it is clear from the context.

As the feasible set of a parametric QP usually varies with its parameter, QP(w)
might only be feasible for certain values of w. Thus, we introduce the following

Definition 2.6 (set of feasible parameters): The set

P
def
=
{
w0 ∈ Rnx | F (w0) 6= ∅

}
(2.11)

is called the set of feasible parameters of a parametric quadratic program. �

In the following, we summarise a couple of properties of the set of feasible
parameters that are crucial for the explicit MPC methods to be presented in 2.2
and the online active set strategy described in Chapter 3.

The first property was proven by [19]:

Theorem 2.3 (convexity and closedness of set of feasible parameters):
The set P of feasible parameters of a parametric quadratic program QP(w) as
defined in Definition 2.6 is convex and closed. �

For further investigating the geometric structure of P , we introduce the following
definition [18]:

Definition 2.7 (critical region): Let a strictly convex parametric quadratic
program QP(w) with the set of feasible parameters P be given. Moreover, for each
w0 ∈ P let xopt(w0) denote its unique optimal (primal) solution and A

(
xopt(w0)

)

the corresponding optimal active set. Then, for every index set A ⊆ {1, . . . ,m},
the set

CRA

def
=
{
w0 ∈ P | A

(
xopt(w0)

)
= A

}
(2.12)

�

is called a critical region of P.

It is shown in [18, 170] that the set of feasible parameters P is not only convex
and closed but can be subdivided into a collection of polyhedra (see, e.g., [77] for
an elementary proof in case that the LICQ as introduced on page 2.1.2 holds):

Theorem 2.4 (partition of the set of feasible parameters): For a strictly
convex parametric quadratic program QP(w) the following hold:

(i) All closures of critical regions cl (CRAi
) are closed polyhedra with pairwise

disjoint interiors.



QUADRATIC PROGRAMMING 21

(ii) The set of feasible parameters P can be subdivided into a finite number of
closures of critical regions:

P =

2m⋃

i=1

cl (CRAi
) , Ai ⊆ {1, . . . ,m} . (2.13)

�

The proof of Theorem 2.4 also gives us some insight into the structure of the
optimal solution xopt(w) of the parametric quadratic program QP(w0). We
summarise this important result (see [18, 170]) in the following

Theorem 2.5 (piecewise affine optimal solution): Let a strictly convex
parametric quadratic program QP(w0) and its set of feasible parameters P be
given. Then the following is true:

(i) Its optimal solution is a piecewise affine and continuous function

xopt : P −→ Rn ,

(ii) its optimal objective function value is a piecewise quadratic and continuous
function

νopt : P −→ R

w0 7−→
1

2
xopt(w0)′Hxopt(w0) + xopt(w0)′g(w0) .

The notion “piecewise” means that there exists a finite partition of P into poly-
hedral critical regions such that the restrictions of xopt and νopt to each critical
region are affine or quadratic, respectively. �

Continuity of the optimal solution function xopt was already shown by Fiacco [84]
in the context of sensitivity analysis in nonlinear programming; Zafiriou [253]
proved that xopt is piecewise affine in order to obtain stability results.

2.1.4 Remark on State-Elimination

Let us introduce the following short-cuts:

X
def
=




xk0

xk0+1

...
xk0+np


 ∈ R(np+1)·nx , U

def
=




uk0

uk0+1

...
uk0+np−1


 ∈ Rnp·nu . (2.14)



22 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

Using these definitions, it is easy to see that a discrete-time linear optimal control
problem (1.11) is a special parametric quadratic program QP(w) with optimisation
variables1 Its parameter vector w comprises at least the initial value of the
differential states w0 at time k0. Additionally, it might contain the discrete-time
values of the reference trajectories yref

k and uref
k or time-varying constraint limits

bk.

Using Equation (1.11c) all states are uniquely determined by their initial value xk0

(which is given) and the control input sequence uk0 , . . . , uk0+np−1. Thus, though
formally correct, it might look odd that the discrete-time state trajectory X is
part of the optimisation variables.

However, it is often advisable to keep X in the formulation of the (parametric)
QP as this leads to highly structured and sparse QP matrices2 H and G: The
contribution of the kth interval, k0 ≤ k ≤ k0 + np − 1, to the objective function
value only depends on the values of the states xk and controls uk on this respective
interval. Therefore, H is a block-diagonal matrix. Similarly, as xk+1 only depends
on xk and uk, also the constraint matrix G has only a few dense blocks, while all
other entries are zero. This structure can be exploited by dedicated sparse QP
solvers leading to dramatically reduced solution times compared with standard
dense implementations (see e.g. [196] for an interior-point implementation).

An alternative way to exploit this sparsity is to actually eliminate the discrete state
trajectory from the QP formulation. After this step, also called condensing [38],
the optimisation variables only comprise the control input sequence x = U ∈
Rnp·nu . Thus, the (parametric) QP to be solved has much fewer degrees of freedom
but comes at the expense of dense matrices H and G. Note, however, that also
these condensed matrices show a special rank structure that could be exploited for
speeding-up computations.

The question whether the states should be eliminated from the QP formulation or
not depends on:

• whether a sparse QP solver is available,

• whether the dense QP matrices change and need to be re-calculated during
the runtime of the process,

• the length of the prediction horizon, i.e. np,

1Note that both the differential states as well as the primal optimisation variables are usually
denoted by x. We stick to this convention here as the respective meaning should always be clear
from the context.

2In fact, they turn out to be higher-order (quasi-)separable matrices [233] for which tailored
representations and efficient structure-exploiting linear algebra operations have been developed
(see, e.g., [61, 58]).



EXPLICIT SOLUTION METHODS 23

• the number of states and control inputs (in particular the ratio nx

nu
).

Obviously condensing needs to be chosen if no sparse QP solver is available.
As dense QP solver implementations are still more common, this is a question
of practical relevance. However, condensing itself is computationally costly, so
it becomes less attractive if it needs to be performed online. Furthermore,
keeping the sparse formulation is more efficient for long prediction horizons as
the computational load of the QP solution grows only linearly in the horizon
length instead of quadratically to cubically when states are eliminated [196]. The
prediction horizon should be regarded as being long if its length is much bigger
than the ratio nx

nu
.

2.2 Explicit Solution Methods

2.2.1 Main Concept

The third step of Algorithm 1.1 requires the solution of an optimal control problem
at each sampling instant while the controlled process is running. Although this
task reduces to solving a single convex QP in case of a linear MPC formulation,
this might still be computationally prohibitive when sampling times become very
short. Therefore, explicit MPC methods solve all possibly arising QP instances
beforehand, i.e. they solve the parametric quadratic program QP(w0), and simply
look-up the respective stored solution when needed [18].

The parametric QP (also referred to as “multi-parametric” quadratic program
to emphasise that w0 is usually nonscalar) is solved as follows [18]: first, an
arbitrary parameter ŵ0 in the interior of a critical region is determined by solving
an appropriate linear programming problem (LP). Then QP(ŵ0) is solved providing

a polyhedral representation {w ∈ P | Âw ≥ b̂} of the critical region CR
Â

with

ŵ0 ∈ CR
Â

as well as an affine representation Ĉw + d̂ of the optimal solution
over CR

Â
. Afterwards, the complement P \ CR

Â
can be easily divided into a

partition of m̂
def
= dim b̂ convex polyhedra P1, . . . ,Pm̂ by successive changes of

the defining inequalities Âiw ≤ b̂i into Âiw > b̂i. These steps are recursively
performed for P1, . . . ,Pm̂ until a full polytopic representation of the solution is
obtained. Theorem 2.5 guarantees that only a finite number of critical regions
and corresponding explicit affine representations of the solution have to be stored.
Further refinements such as reduction of the number of QPs to be solved and linear
dependency handling are described in [225, 219].

Solving the parametric QP and storing its piecewise affine solution within a look-
up table is done offline. The only remaining computation to be performed during



24 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

the runtime of the process is to identify the critical region to which the current
initial value w0 belongs and to evaluate the corresponding affine solution function.
This can be implemented straight-forwardly by simply checking all polyhedral
representations, i.e. checking if Âw0 ≥ b̂, until the correct critical region is found
and then calculating the optimal solution via Ĉw0 + d̂.

The explicit method became popular for applications where the available online
computing power is not sufficient to solve a QP within the required sampling
period (and memory is cheap). For example, explicit MPC has been successfully
applied to a permanent magnet synchronous motor with a sampling period of
25 microseconds [95]. A recent survey of explicit MPC methods is given in [5];
an open-source implementation of explicit methods can be found in the Multi-
Parametric Toolbox (MPT) for Matlab [152].

However, pre-calculating the optimal solution has a serious drawback: since the
number of possible critical regions grows exponentially in the number of constraints
(up to 2m different optimal active sets), it is limited to low dimensional parameter
spaces P , i.e. to ODE models comprising only a few differential states. Otherwise
both the offline computation and storage requirements as well as the online effort
for finding the correct critical region soon become prohibitively large. A further
relevant problem in practice is that online tuning becomes very difficult as the
offline computation time blows up.

In order to speed-up online evaluation of the MPC law, the construction of a
binary search tree has been proposed [226]. An efficient point location algorithm
has been presented in [239].

2.2.2 Approximate Methods

Approximate explicit MPC methods have been developed to reduce the offline
complexity at the expense of a suboptimal online performance or slight constraint
violations. Early approaches aim at combining several “small” critical regions to
a “bigger” one [17, 136, 226]. More recently, an iterative approximation of the
explicit solution has been proposed [138] that permits gradual improvement of the
quality of the approximation. Also ideas to directly approximate the nonconvex
map between w0 and the optimal solution has been developed [137, 30].

Approximate methods have extended the scope of explicit MPC to slightly higher
dimensional problems. Moreover, it has been shown that they can drastically
reduce the high computational load of pre-calculating the optimal solutions
while still fulfilling application-dependent controller specifications. In order to
further increase the scope of explicit techniques, also combinations of them with
online QP solvers have been proposed (see the summary in Subsection 2.3.4).



ITERATIVE SOLUTION METHODS 25

Nevertheless, explicit MPC methods remain restricted to small-scale problems
with short prediction horizons. Typically, they cannot treat problem formulations
comprising more than 6–8 differential states or a control horizon much longer than
5 intervals [174]. For solving larger MPC problems, iterative solution methods
need to be employed online.

2.3 Iterative Solution Methods

There exists a great variety of iterative methods for solving convex QPs as arising
in linear MPC. Most of them are for general purpose, others are tailored to the
MPC context. This section summarises the most important ones and also mentions
corresponding software implementations.

2.3.1 Active-Set Methods

An important class of methods for solving convex QPs are active-set methods,
which were originally developed as extensions of the simplex method for solving
LPs [248, 54]. The fundamental idea of active-set methods is to fix a set of active
constraints (often referred to as working set) and to solve the resulting equality
constraint QP, which is computationally cheap. This set of active constraints is
then repeatedly updated until the optimal one is found. One can distinguish at
least two main variants of active-set methods: primal and dual ones, to which we
restrict our presentation.

Once a feasible starting point has been found, primal active-set methods generate a
sequence of primal feasible iterates until also dual feasibility and thus an optimal
solution is obtained [178]. If no feasible starting point x(0) (and corresponding
working set A(0) ⊆ A(x(0))) is provided by the user, a so-called Phase I is employed
to generate one or to conclude that the QP is infeasible (see e.g. [87] for details).
Starting from x(0), a step direction ∆x(0) that keeps (primal) feasibility is computed
based on the assumption that A(0) is indeed an optimal active set. If ∆x(0) 6= 0,
a step length is calculated that respects the inactive constraints. If no full step
can be taken as it would violate an inactive constraint, this constraint is added to
the current working set and the iteration continues. If ∆x(0) is zero, it is checked
whether all dual multipliers satisfy the KKT optimality conditions (2.8). If so, an
optimal solution is found. Otherwise, a constraint corresponding to a multiplier
violating the optimality conditions is dropped from the current working set. Also
in this case, the iteration continues based on the new iterate and the updated
working set.



26 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

For determining the current step direction, all active-set solvers need to solve
a linear system; it is usually called the KKT system as it is implied by the
KKT optimality condition. This KKT system can be dense or sparse depending
on whether the Hessian and constraint matrix are dense or sparse. The way
this system is solved is principally independent from the other parts of the
algorithm, however certain combinations are usually more suited to yield an
efficient implementation than others. For dense systems, it is common to either
project the Hessian matrix to the range or the null space of the active constraints
yielding range space [108, 97] or null space methods [98, 101, 88], respectively. For
sparse systems, also iterative linear solvers might be applied. As factorising the
KKT matrix has cubic complexity in the number of optimisation variables, most
implementations make use of matrix updates that require only a quadratically
growing number of floating-point operations.

A couple of implementations of primal active-set solvers exist, for example:
qpopt [99] and bqpd [88] are FORTRAN implementations of a null-space method,
where bqpd also provides sparse matrix algebra routines. Also Matlab’s quadprog

function or CPLEX [53] can use a dense primal active-set solver.

Dual active-set methods generate a sequence of dual feasible iterates until also
primal feasibility and thus an optimal solution is obtained. This is equivalent to
solving the dual QPdual with a primal active-set method [109]. This also implies
that dual methods iterate on both the primal variables x and the dual variables y.

Obtaining a dual feasible starting point
(
x(0) , y(0)

)
is trivial as the choice(

−H−1g , 0
)

is always dual feasible. The fact that no Phase I is needed is a
strong advantage of dual methods over primal ones, which comes at the price
that only strictly convex QP can be handled (though [39] presented an extension
to the general convex case). Analogous to primal methods, dual QP methods
solve at each iteration k a linear system to obtain a step direction

(
∆x(k) ,∆y(k)

)
,

determine a step length and check whether a constraint needs to be added to or
removed from the current working set A(k). We refer to [109] for more details.
As dual feasibility means primal optimality, a dual active-set method produces
iterates that would be optimal for the given QP if the violated constraints were
not present.

Dual active-set methods based on a dense range-space linear algebra are
implemented within QLD [206] (in FORTRAN), qpas [242] (in C) and in the open-
source C++ code QuadProg++ [93]. Moreover, also CPLEX [53] can use a dual active-
set solver. A primal-dual regularised method for sparse convex QPs is implemented
in QPBLUR [166] (in FORTRAN and Matlab). QPSchur is a C++ implementation
of a dual active-set method for large-scale, strictly convex QPs based on a Schur
complement approach [13].



ITERATIVE SOLUTION METHODS 27

Though none of these QP solvers has been specifically written for use in MPC, they
nevertheless can often be used very successfully for this purpose. For example, the
dual active-set solver qpas has been applied to MPC-based vibration suppression
at sampling rates of 5 kHz [244, 243]. In contrast, [11] adapted a dual active-set
solver for efficiently solving QPs within a branch and bound method for solving
mixed-integer MPC problems. The online active set strategy as proposed in [75]
has been developed to exploit the parametric nature of QPs arising in MPC for
speeding-up the online QP solution. It has similarities to a dual active-set method
and, for example, allows for warm-starting the QP solution without a Phase I.
We will summarise the online active set strategy in Chapter 3, where also further
theoretical extensions are presented. Its efficient open-source C++ implementation
qpOASES is the topic of Chapter 4.

The QPs arising in the MPC context are specially structured and involve sparse
QP matrices, provided that the states are kept within the formulation (see
Subsection 2.1.4). Exploiting this structure within active-set QP solvers has been
already proposed by [139], who used a sparse LR factorisation to solve the KKT
system (2.8). Similar ideas have recently been proposed in [203]. For the case of
input-constrained MPC problems, [47] uses Pontryagin’s minimum principle [43]
to solve the sparse KKT system via a recursion over state and co-state variables.
An active-set QP solver for exploiting the block-structure arising from a multiple
shooting discretisation for solving nonlinear MPC problems is described in [146].

The computational load of all these methods grows only linearly in the length
of the prediction horizon np (instead of quadratically to cubically if states are
eliminated without further exploiting the rank structure of the resulting dense
QP matrices). However, they suffer from the drawback that each update of the
current working set can become as expensive as a complete re-factorisation of the
sparse KKT system. Therefore, QP sparsity arising from long prediction horizons
is often more readily exploited by tailored interior-point methods.

2.3.2 Interior-Point Methods

Interior-point methods form a second important class of methods to solve convex
QPs. Its modern form has been initially developed for linear programming [141]
and was quickly extended to convex quadratic programming and general nonlinear
programming. Interior point methods are mainly used in two different variants:
primal barrier methods and primal-dual methods.

Primal barrier methods replace the inequality constraints Gx ≥ b of the QP by
a weighted barrier function in the objective. This barrier function is constructed
such that it becomes (infinitely) expensive to violate these constraints; most often



28 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

a logarithmic barrier function is used:

1

2
x′Hx+ x′g − κ(k)

m∑

i=1

log (Gix− bi) (2.15)

The resulting equality constrained convex NLP is then solved by Newton’s
method [60]. In order to ensure convergence to the solution of the original QP, this
procedure is repeated with a decreasing value of κ(k) → 0 for k →∞. By changing
κ(k) moderately in each step k of the outer loop, it can be ensured that the inner
Newton iteration always remains in the region of quadratic convergence and thus
solves the inner problem within very few iterations [250]. In fact, a polynomial
runtime guarantee can be given if κ(k) is updated in certain ways [177].

Primal-dual methods combine the inner and outer loop of primal barrier methods
by reducing κ(k) at each iteration of Newton’s method. Unlike primal barrier
methods, both primal and dual variables are treated equally and updated within
each Newton iteration. Primal-dual methods avoid the need of a feasible starting
point and often work better in practice, though fewer convergence results exist.
For a detailed description we refer to excellent textbooks [250, 40].

An early efficient implementation has been proposed by Mehrotra [172]. Ipopt [235,
236] is an open-source C/C++ implementation of a primal-dual interior-point
method for general NLPs; another one for solving convex QPs is OOQP [94]. Also
the C package LOQO [234] and the FORTRAN package GALAHAD [111] implement
primal-dual methods. Moreover, many commercial implementations of IP methods
exist.

Interior-point algorithms exhibit the great advantage of a relatively constant
calculation time per QP solution. Therefore, they have been intensively used
for MPC applications and a couple of modifications to speed-up the online QP
solution have been proposed. We will summarise some of them.

For exploiting the above-mentioned sparsity of the QPs arising from MPC
formulations, a discrete-time Riccati recursion has been proposed to solve the
linear system in each Newton step [196, 140]. While the computational load
of a standard implementation grows cubically in the length of the prediction
horizon np, the cost of the Riccati recursion depends only linearly on np. Thus,
this technique is particularly interesting for MPC problems formulated on long
prediction horizons.

In contrast to active-set methods, interior-point methods suffer from the important
drawback that it is difficult to warm-start them based on previous solution
information. Recently, some progress has been achieved: [252] presents ideas
to warm-start LP problems, [212] report computational savings of up to 70 % for



ITERATIVE SOLUTION METHODS 29

convex QPs. Similar ideas combined with the above-mentioned Riccati recursion
have been presented in [238], where also computational results of a prototype
implementation based on an infeasible start primal barrier method (see [40]) are
given.

Also inexact interior-point methods, which are based on an inexact Newton
method, have been proposed to trade of computational effort and solution accuracy.
[211] proposes the use of an iterative method (the minimum residual method [185])
to solve the linear system and presents dedicated pre-conditioners to accelerate
convergence. Numerical results indicate that their method outperforms the one
presented in [196].

Yet another approach to reduce computation times is to automatically generate a
customised interior-point method for each specific application, as recently proposed
by [169]. We will further discuss this approach in Chapter 8.

Direct comparisons of interior-point with active-set methods indicate that it
depends on the problem’s characteristics which approach is more suited: “For
large QPs with many active inequality constraints the interior-point approach is
expected to require far fewer iterations than an active-set method to arrive at
the solution. However, each of the interior-point iterations is many times more
expensive than the iterations performed in an active-set method.” [14].

2.3.3 Further Iterative Approaches

Recently, [189] proposed to formulate MPC problems as a system of piecewise
affine equations. For doing so, the inequality equations within the KKT optimality
conditions (2.8) are posed as piecewise affine equations by introducing a function
that saturates whenever one of these inequalities becomes active. This allows one
to solve the MPC problem by means of a regularised piecewise-smooth Newton
method [158] using a line search globalisation based on a quadratic spline. At each
iteration a linear system needs to be solved, whose dimension equals the cardinality
of the current working set. As this number is often much smaller than the total
number of optimisation variables, this is a key feature making the proposed method
very fast in many cases. Moreover, exploiting the above-mentioned QP sparsity of
MPC problems comprising a long prediction horizon, renders this approach very
efficient for large-scale models and long control horizons [189].

For solving MPC problems efficiently, the use of a fast gradient method (see [176])
has been recently proposed [199, 200]. Classical gradient schemes do not rely on
second order derivative information and take a damped steepest descent step in
each iteration. Fast gradient methods modify this idea to yield faster convergence.
For the MPC context this method offers two main advantages: First, they allow



30 OVERVIEW OF EXISTING METHODS FOR LINEAR MPC

us to derive reasonably tight a priori bounds on the number of iterations required
to find an optimal solution, which is of great practical relevance. Second, they are
particularly easy to implement as they only require to compute the gradient and
to perform a projection operation in each step (and no Hessian matrix operations).
However, computational efficiency of fast gradient methods depends crucially on
the ability to efficiently project the QP gradient onto the feasible set F . This
projection is very cheap for box-constrained MPC problems, but treating general
constraints makes this approach significantly more expensive.

2.3.4 Combinations of Explicit and Iterative Methods

In order to combine the fast QP solution of explicit methods with the generality
of online QP solution, an approach called partial enumeration has been proposed
in [187]. It is based on the following observation: although exponentially many
critical regions exist, only a small fraction of them actually becomes relevant during
the runtime of the process. Thus, instead of pre-calculating all critical regions, only
those believed to be part of this relevant fraction are calculated and stored in a
cache. If the critical region corresponding to the optimal solution of the current
QP is found within the cache, its affine representation of the optimal solution is
used to provide very fast feedback. Otherwise, while applying some suboptimal
heuristic control action, the corresponding online QP is solved in the background
using a standard QP solver. Once this QP is solved, its solution is used to obtain
the corresponding critical region, which is then added to the cache. Recently,
also robust stability of an MPC scheme based on partial enumeration has been
shown [188].

Another approach to widen the applicability of explicit MPC by combining it
with an iterative solver has been presented in [256]. It suggests to pre-calculate
an approximate explicit control law that is used online to generate a feasible
initial guess for warm-starting the online optimisation. The idea is presented for
MPC formulations that lead to a parametric LP problem and a modified simplex
algorithm is used as online LP solver. In order to meet hard real-time bounds on
the computational load, the LP solver only performs a limited number of iterations
which possibly leads to suboptimal control actions. This is justified by a procedure
for bounding the suboptimality and for establishing stability guarantees of the
suboptimal online control law. Moreover, the authors formulate another offline
optimisation problem for approximately determining the optimal trade-off between
the effort required to evaluate the explicit control law and the effort required to
perform a certain number of LP iterations.



Chapter 3

Fast Linear MPC using the
Online Active Set Strategy

This chapter starts with reviewing the main ideas of the online active set strategy
as recently proposed by the author [75, 77]. It has been designed to solve strictly
convex quadratic programs arising in linear MPC very efficiently. This review is
followed by descriptions of novel theoretical extensions for initialising the online
active set strategy (also in case the QP matrices change) and for solving convex
QPs by means of a proximal point method. A proper implementation of the online
active set strategy within the open-source software qpOASES and its application
to industrial case studies constitute the main contribution of the first part of this
thesis.

3.1 The Online Active Set Strategy

3.1.1 Main Idea

For solving (parametric) quadratic programs of the form (2.9) we propose to
employ the online active set strategy. This strategy has been initially proposed
in [75, 77] and we closely follow the presentation given therein. Its core idea, the
introduction of a homotopy to traverse the critical regions while solving the QP,
has been proposed independently by [21] in a different context.

The development of the online active set strategy for fast MPC applications has
been motivated by the following observations:

31



32 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

• Linear MPC constitutes a parametric QP that has to be solved repeatedly for
changing values of its parameter w = w0. If QP solution is fast, thus allowing
for (very) short sampling times, w0 will usually change slowly leading to
QP solutions that also vary moderately from one QP to the next. As this
usually means that also the optimal active-set changes moderately, warm-
starting the QP solver with the solution of the previous QP might speed-up
QP solution drastically.

• Warm-starting still seems to be a big advantage of active-set methods
(though a lot of effort has been made to warm-start interior-point meth-
ods [252, 212]). Moreover, active-set solvers are natural candidates to
directly incorporate the theoretical knowledge on the geometric properties
of parametric QP solutions as described in Subsection 2.1.3.

• As active-set QP solvers lack a practical runtime guarantee, there might
occur situations where the MPC sampling time does not allow to solve the
current QP exactly. In these situations it would be desirable to have an
interpretation of the intermediate iterate. While standard primal or dual
active-set solvers cannot provide a satisfactory justification for applying an
intermediate iterate to the process (see Section 2.3), the introduction of a
homotopy when traversing the critical regions does better justify the use of
intermediate iterations for obtaining the feedback control.

• Using a homotopy eliminates the need for finding an initial feasible point like
a Phase I for primal active-set QP solvers (cf. Subsection 2.3.1). Moreover, it
allows us to re-use matrix factorisations not only within the solution of one
QP but also across multiple QP solutions (we will refer to this as hot-starting
the QP solver).

We will now describe the homotopy used within the online active set strategy for
the transition from the solution of a quadratic program QP(w0) to the next one
QP(wnew

0 ). This homotopy can be interpreted as moving on a straight line in the
parameter space P (see Definition 2.6). As this set is convex, see Theorem 2.3, we
can be sure that all QPs on this line remain feasible and thus can be solved. As
long as we stay in one critical region, the QP solution depends affinely on w0. If
we have to cross the boundaries of critical regions during our way along the line,
Theorem 2.5 ensures that the solution can be continued continuously.

Using the notation from Definition 2.5, we introduce the homotopy parameter τ
to re-parameterise w0 as well as the gradient and constraint vector:

w̃0 : [0, 1]→ Rnx , w̃0(τ)
def
= w0 + τ∆w0 , (3.1a)

g̃ : [0, 1]→ Rn, g̃(τ)
def
= g(w0) + τ∆g , (3.1b)

b̃ : [0, 1]→ Rm, b̃(τ)
def
= b(w0) + τ∆b , (3.1c)



THE ONLINE ACTIVE SET STRATEGY 33

where we use the following definitions:

∆w0
def
= wnew

0 − w0 , (3.2a)

∆g
def
= g(wnew

0 )− g(w0) = F∆w0 , (3.2b)

∆b
def
= b(wnew

0 )− b(w0) = E∆w0 . (3.2c)

Let us assume that we have solved a parametric QP of the form (2.9) for a
certain initial state w0 and (after one sampling period) want to solve it again
for a new initial state vector wnew

0 with unknown solution
(
xopt

new, y
opt
new

)
. We start

from the known optimal solution xopt and yopt (and a corresponding index set
A ⊆ A(xopt)) of the previous QP(w0) and aim at solving QP(wnew

0 ). The core
idea of the online active set strategy is to move from w0 towards wnew

0 , and thus
from (xopt, yopt) towards (xopt

new, y
opt
new), while keeping primal and dual feasibility

(i.e. optimality) for all intermediate points. This means that we are introducing

homotopies (M
def
= {1, . . . ,m})

x̃opt : [0, 1]→ Rn, x̃opt(0) = xopt, x̃opt(1) = xopt
new, (3.3a)

ỹopt : [0, 1]→ Rm, ỹopt(0) = yopt, ỹopt(1) = yopt
new, (3.3b)

Ã : [0, 1]→ 2M, Ã(0) = A, Ã(τ) ⊆M, (3.3c)

Ĩ : [0, 1]→ 2M, Ĩ(τ)
def
= M \ Ã(τ), (3.3d)

which satisfy the KKT optimality conditions (see Theorem 2.2) at every point
τ ∈ [0, 1]:

(
H G′

Ã(τ)

G
Ã(τ) 0

)(
x̃opt(τ)

−ỹopt

Ã(τ)
(τ)

)
=

(
−g̃(τ)

b̃
Ã(τ)(τ)

)
, (3.4a)

ỹopt

Ĩ(τ)
(τ) = 0 , (3.4b)

G
Ĩ(τ)x̃

opt(τ) ≥ b
Ĩ(τ)(τ) , (3.4c)

ỹopt

Ã(τ)
(τ) ≥ 0 . (3.4d)



34 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

Since x̃opt(τ) and ỹopt(τ) are piecewise linear functions (and x̃opt(τ) even
continuous according to Theorem 2.5), locally a relation of the form

x̃opt(τ)
def
= xopt + τ∆xopt , (3.5a)

ỹopt
A

(τ)
def
= yopt

A
+ τ∆yopt

A
, (3.5b)

holds for sufficiently small τ ∈ [0, τmax], τmax ≥ 0.

Because we start from an optimal solution, we know that conditions (3.4) are
satisfied at τ = 0. Therefore equality (3.4a) is satisfied for all τ ∈ [0, τmax] if and
only if

(
H G′

A

GA 0

)(
∆xopt

−∆yopt
A

)
=

(
−∆g
∆bA

)
(3.6)

holds. Because linear independence of the rows of GA can easily be ensured [21],
Equation (3.6) has a unique solution.

As long as one stays within a critical region, the QP solution depends affinely
on w0. However, the active-set changes whenever a previously inactive constraint
becomes active, i.e.

G′
i(x

opt + τ∆xopt) = bi(w0) + τ∆bi

for some i ∈ I, or a previously active constraint becomes inactive, i.e.

yopt
i + τ∆yi = 0

for some i ∈ A. Thus, the maximum possible homotopy step length τmax is
determined as follows1:

τprim
max

def
= min

i∈I

G′

i
∆xopt<∆bi

bi(w0)−G′
ix

opt

G′
i∆x

opt −∆bi
, (3.7a)

τdual
max

def
= min

i∈A

∆yi<0

−
(yopt)i

∆yi
, (3.7b)

τmax
def
= min

{
1, τprim

max , τ
dual
max

}
. (3.7c)

This choice of τmax ensures that conditions (3.4c), (3.4d) remain fulfilled. Moreover,

by defining ∆yopt
I

def
= 0 also equality (3.4b) holds for all τ ∈ [0, τmax].

1The minimum over an empty set is defined as ∞.



THE ONLINE ACTIVE SET STRATEGY 35

If τmax equals one, a full step along the homotopy path can be taken and the
solution of the new quadratic program QP(wnew

0 ) is found. Otherwise, a primal or
dual blocking constraint—which limits τmax to a value lower than one—indicates
a constraint to be added to or removed from the index set A. After updating A

and the KKT matrix in Equation (3.6), a new step direction is calculated and
the whole procedure repeats until the solution of QP(wnew

0 ) is found. This idea is
summarised in Algorithm 3.1 and illustrated in Figure 3.1.

Algorithm 3.1 (online active set strategy)

input: data and solution (xopt, yopt) of QP(w0) and associated index set of
active constraints A, new parameter wnew

0 ∈ P

output: solution pair (xopt
new, y

opt
new) of QP(wnew

0 ) and associated index set Anew

(1) Calculate ∆w0, ∆g and ∆b via Equations (3.2).

(2) Calculate primal/dual step directions ∆xopt and ∆yopt via Equation (3.6).

(3) Determine maximum homotopy step length τmax from Equations (3.7).

(4) Obtain optimal solution of QP(w̃0):

Set w̃0 ← w0 + τmax∆w0, x̃opt← xopt + τmax∆xopt, ỹopt← yopt + τmax∆yopt.

(5) switch τmax

• case τmax = 1 :

Optimal solution of QP(wnew
0 ) found.

Set xopt
new← x̃opt, yopt

new ← ỹopt, Anew ← A and stop!

• case τmax = τdual
max :

Remove a dual blocking constraint2 j ∈ A, with τdual
max = −

y
opt
j

∆yj
, from

index set A← A \ {j}.

• case τmax = τprim
max :

Add a primal blocking constraint j /∈ A, with τprim
max =

bj(w0)−G′

jx
opt

G′

j
∆xopt−∆bj

, to

index set A← A∪{j}, while ensuring linear independence of the active
constraint matrix GA (see [21, 77]).

(6) Set w0 ← w̃0, xopt ← x̃opt, yopt ← ỹopt and continue with step (1).

2If the Hessian matrix H is only positive semi-definite, one might ensure that the KKT matrix
in Equation (3.6) remains invertible following the approach described in [21].



36 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

w0

wnew
0

Figure 3.1: Homotopy paths from one QP to the next across multiple critical
regions (taken from [75]).

3.1.2 Real-Time Variant

One advantage of the online active set strategy is that it produces a sequence
of optimal solutions for QPs along the homotopy path. Thus, it is possible to
interrupt this sequence after every iteration and to start a new homotopy from the
current iterate towards the new QP. Thus, in a real-time setup, one can try to find
the optimal solution of the current QP within a given sampling time. But if too
many iterations are necessary to get from the solution of the previous QP to that
of the current QP, one can simply stop the solution of the current QP and start
a new homotopy towards the solution of the newest one. If solving the newest
QP requires fewer iterations than computable within the given sampling time,
the online active set strategy can make up for previously unperformed active-set
changes.

This situation is illustrated in Figure 3.2, where we assume that only two active-set
changes are allowed per QP solution. In [77, Chapter 5] a non-trivial example is
given where the fully converged QP solution at a certain sampling instant requires
14 iterations and 6 iterations at the next. Limiting the number of active-set
changes to 10 per QP solution yields a suboptimal solution at the first sample,
while the optimal solution of the next QP can be found again within the given
iteration limit.

We emphasise that also this real-time variant does not require re-factorisations
of the KKT matrix in Equation (3.6). Instead matrix factorisations can be
maintained based on matrix updates featuring a quadratic complexity in the
number of QP variables can be used. As the computational effort per iteration



THE ONLINE ACTIVE SET STRATEGY 37

w0

wnew
0

Figure 3.2: Homotopy paths (solid) from one QP to the next with limited number
of active-set changes (taken from [75]).

can be determined exactly (see also Subsection 4.1.4), it is easy to estimate the
maximum number of iterations that can be performed within a given sampling
period. Before actually employing the online active set strategy in practice,
realistic closed-loop simulations can give a hint whether—and if so: how often—
this iteration limit is likely to be reached. In a reasonable setup, we expect that
almost all QPs can be solved within the given number of iterations and that
employing the real-time variant in the few other cases yields acceptable control
inputs.

An intermediate iterate of the online active set strategy obtained by interrupting
the homotopy prematurely might be infeasible with respect to the QP we actually
want to solve3, as also the constraint vector b(w) might vary from one QP to the
next. Though this is surely a drawback of the method, we note that this is also the
case when a dual active-set method is employed. Moreover, even primal active-set
methods (that produce a sequence of primal feasible iterates) might not guarantee
that intermediate iterates are feasible: if they are initialised with an infeasible
initial guess (e.g. the previous QP solution), already the employed Phase I to
find a feasible starting point for the primal iterations might exceed the allowed
computation time.

This discussion shows that any practical MPC scheme relying on an online QP
solver, needs to ensure feasibility when intermediate results are passed to the
process. However, for the online active set strategy we know that intermediate
iterates solve a QP that is known to lie on the straight line between QP(w0) and

3However, all intermediate iterates will be feasible if constraints do not change. This is true
in the common situation when only input bounds are present, i.e. G = In, that do not change
over time.



38 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

QP(wnew
0 ) (while dual active-set methods deliver in each iteration the solution to

a modified primal QP). Thus, we know that iterates monotonically get closer to
the true solution in the parameter space P . Recalling that the initial state w0 is
usually not known exactly but rather estimated and thus only known to lie within
a certain confidence region (being a subset of P), this property can be of practical
relevance.

3.2 Initialisation of the Homotopy

The online active set strategy iterates through optimal solutions of intermediate
QPs along the homotopy path. As the solution of each consecutive QP starts at
the optimal solution of the previous one, this section addresses the question of how
to initialise the homotopy of the very first QP to be solved. Besides the standard
initialisation as presented in [77], we also present novel variants that significantly
speed-up QP solution in case a sufficiently accurate guess for the optimal active-set
is available. Moreover, we discuss how to obtain such guesses in the MPC context.

3.2.1 Initialisation Strategies

Standard Initialisation

Let us assume that we want to solve the quadratic program QP(w0) for a given
parameter w0, being the first one of possibly a whole sequence of QPs. The main
idea for initialising the online active set strategy is to setup an auxiliary parametric
quadratic program QPaux(w) whose solution for w = waux

0 is already known and
whose solution for w = w0 coincides with the optimal solution of QP(w0). This
allows one to perform a usual homotopy from the optimal solution of QPaux(waux

0 )
to that of QP(w0).

It turns out that instead of constructing such an auxiliary parametric quadratic
program QPaux(w) explicitly, it suffices to construct a single instance QPaux(waux

0 ),
which is a standard QP. Let us assume that QP(w0) does not comprise any
(implicitly defined) equality constraints and that no prior information on its
solution is available. In this situation it is natural to construct QPaux(waux

0 ) such
that its optimal active-set is empty:

QPaux(waux
0 ) : min

x

1
2x

′Hx+ x′
0 (3.8a)

s. t. Gx ≥ −α · 1 , (3.8b)



INITIALISATION OF THE HOMOTOPY 39

i.e. the gradient vector is set to zero and all components of the constraint vector
to −α with α > 0.

It can be easily verified that the choice xopt def
= 0, yopt def

= 0 and Aopt def
= ∅ satisfies

the KKT optimality conditions (2.8) of QPaux(waux
0 ). Thus, we can now start

from this optimal solution performing a homotopy to the optimal solution of the
initial quadratic program QP(w0). If the unconstrained minimum is also optimal
for this initial QP, its solution will be obtained after a single full step without any
active-set change.

Starting with a Guess for the Optimal Active-Set

In case a good guess for the optimal active-set corresponding to the solution
of QP(w0) is available, the standard initialisation described above may lead to
unnecessarily many active-set changes before finding the optimal solution. In
particular, this is the case if QP(w0) comprises (implicitly defined) equality
constraints as these constraints are known to be active at the optimal solution.
Assuming that a guess for the optimal active-set, denoted by Âopt, is available, we
therefore construct QPaux(waux

0 ) in a different way:

QPaux(waux
0 ) : min

x

1
2x

′Hx+ x′
0 (3.9a)

s. t.

(
G

Âopt

Ĝ
Iopt

)
x ≥

(
0

−α · 1

)
, (3.9b)

where α > 0 and Îopt def
= {1, . . . ,m} \ Âopt summarises the indices of constraints

that are supposed to be inactive at the optimal solution.

This time we set the gradient vector to zero but the constraint vector is chosen
such that constraints that are guessed to be active are indeed active and such that
the remaining ones are inactive. It might happen that a constraint i ∈ Îopt is
guessed to be inactive although it is linearly dependent from the other active ones
(i.e. the ones with an index from Âopt). If this is the case, also the i-th component
of the constraint vector is set to 0 instead of −α rendering this constraint weakly
active. Similarly, if G

Âopt does not have full row rank, only the indices of a linearly

independent subset of these constraints are actually included in Âopt.

Again, it can be easily verified that the choice xopt def
= 0, yopt def

= 0 and Aopt def
= Âopt

satisfies the KKT optimality conditions of (3.9). Thus, we can now start from
this optimal solution performing a homotopy to the optimal solution of the initial
quadratic program QP(w0). If the guess has been perfect, its solution will be
obtained after a single full step without any active-set change.



40 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

Starting with a Guess for the Optimal Primal Solution

It is often more natural to obtain a guess for the optimal primal solution instead of
a guess for the optimal active-set. Such a guess, say x̂opt, can be easily transformed
into one for the optimal active-set: We simply define

Âopt def
=
{
i ∈ {1, . . . , n} | Gix̂

opt ≤ bi
}

to yield a consistent guess for the optimal active-set Âopt. This means that we add
constraints to Âopt that are active or violated at the guessed primal solution x̂opt

(which is sometimes referred to as clipping). Using this definition we construct
QPaux(waux

0 ) as follows:

QPaux(waux
0 ) : min

x

1
2x

′Hx+ x′gaux (3.10a)

s. t.

(
G

Âopt

Ĝ
Iopt

)
x ≥

(
G

Âopt x̂
opt

Ĝ
Iopt x̂

opt −−α · 1

)
, (3.10b)

where α > 0 and the gradient is defined to be gaux def
= −Hx̂opt.

Looking at the KKT optimality conditions of QPaux(waux
0 ), it can be easily verified

that the choice xopt def
= x̂opt, yopt def

= 0 and Aopt def
= Âopt is an optimal solution. As

before, we can thus start from this optimal solution performing a homotopy to
the optimal solution of the initial quadratic program QP(w0). If the guess for the
primal solution has been perfect, its solution will be obtained after a single full
step without any active-set change.

3.2.2 Obtaining Good Initial Guesses

Having presented different strategies to start the homotopy, the question arises
how to obtain good initial guesses to speed-up QP solution in the MPC context.

Part of the answer is that one often does not have to worry about this: as the
online active set strategy can always start from the solution of the previous QP,
the homotopy only needs to be initialised once at the solution of an auxiliary
problem QPaux(waux

0 ). So, if this occurs only once at the very start of the MPC
controller, obtaining a sophisticated guess for the very first QP solution is usually
not necessary from a computational point of view.

The initialisation strategies presented in Subsection 3.2.1 will be most interesting
in the following situations:



EXTENSION TO MULTIPLY LINEARISED MPC 41

• if not a whole sequence but only a single QP needs to be solved and
computation time is crucial;

• if the QP sequence is re-initialised more frequently than only at the very
beginning (e.g. due to accumulating numerical errors in the internal matrix
factorisations as discussed in Subsection 4.3.1) and one is interested in
speeding-up QP solution at the sampling instants where a re-initialisation is
required;

• if one does not want the QP sequence to start each homotopy at the optimal
solution of the previous QP but at a different initial guess instead.

The third situation typically occurs if the nature of the MPC problem to be solved
asks to initialise QP solution with the shifted optimal solution of the previous QP.
This is usually the case when the prediction horizon is long and the contribution
of the Lagrange term to the objective function dominates that of the Mayer term
(see also the discussion in [62]). Also the time-optimal MPC formulation in [230]
makes use of an alternative initialisation of the homotopy.

3.3 Extension to Multiply Linearised MPC

Sometimes a nonlinear process cannot be modelled by a single linear ODE but
using a fully nonlinear model is not desired. In this situation it can be appropriate
to derive a collection of linear models, each of them valid for a certain operating
range. Motivated by an MPC formulation comprising a collection of linear ODEs
to describe a real-world Diesel engine test bench, we present an extension of the
online active set strategy for dealing with such a setup [76].

Let us assume that we derived a number of linear ODEs that are locally valid
within a certain operating range. A somewhat crude heuristic approach is to
formulate a linear MPC problem (see Definition 1.3) for each of these models and
to simply switch between these locally valid linear MPC formulations whenever
the process enters a different operating range. Though this raises serious concerns
about the stability of such a scheme, it allows us to use a standard linear MPC
algorithm promising simpler implementation and faster execution than a fully
nonlinear optimisation algorithm.

For extending the online active set strategy to this specific setup, we first note
that we yield a standard parametric quadratic program QP(w0) = QPH,G(w0) as
long as only one of the local linear MPC formulations is used. Thus, our extension
focusses on the case where a switch to a different local formulation occurs, which
corresponds to a different parametric quadratic program QPHnew,Gnew(w0) with
new Hessian and constraint matrix.



42 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

Let us assume that we have solved QPH,G(w0) with optimal primal-dual solution
pair (xopt, yopt) and corresponding optimal active-set Aopt. The main observation
is that this solution is also optimal for the following auxiliary QP comprising the
new Hessian and constraint matrix:

QPaux
Hnew,Gnew(waux

0 ) : min
x∈Rn

1
2x

′Hnewx+ x′gaux (3.11a)

s. t. Gnewx ≥ baux , (3.11b)

with

gaux = g − (Hnew −H)xopt + (Gnew
Aopt −GAopt )′yopt

Aopt , (3.12a)

baux = b+ (Gnew
Aopt −GAopt )xopt . (3.12b)

It is easy to show that the pair (xopt, yopt) actually is an optimal solution of
QPaux

Hnew,Gnew(waux
0 ) by subtracting the KKT optimality conditions of QPH,G(w0)

from the ones of QPHnew,Gnew(w0).

Thus, it is possible to start a homotopy from the optimal solution (xopt, yopt)
of QPaux

Hnew,Gnew(waux
0 ) towards the optimal solution of QPHnew ,Gnew(wnew

0 ) as
described in Algorithm 3.2.

Algorithm 3.2 (warm-start after QP matrix change)

input: optimal solution (xopt, yopt) to quadratic program QPH,G(w0)
with corresponding index set Aopt,
new parameter wnew

0 and new QP matrices Hnew, Gnew

output: solution pair (xopt
new, y

opt
new) of QPHnew,Gnew(wnew

0 ) and corresponding
index set Aopt

new

(1) Calculate matrix factorisations4 of new Hessian matrix Hnew and new
constraint matrix Gnew for the previously optimal index set Aopt.

(2) Calculate auxiliary gradient vector gaux and auxiliary constraint vector baux

via Equations (3.12).

(3) Perform a usual homotopy for QPHnew,Gnew(wnew
0 ) as described in Algo-

rithm 3.1, starting at (xopt, yopt) and Aopt.

4If Gnew
Aopt has full row rank, otherwise any sub-matrix with same rank and linearly independent

rows can be used instead.



REGULARISATION PROCEDURE FOR CONVEX QPS 43

This extension makes it possible to also warm-start the QP solution when switching
between different local linear MPC formulations. The way this is done is similar
to the initialisation strategies described in Subsection 3.2.1 but comes at the
expense of additional computational effort, namely a re-factorisation of the new
QP matrices with cubic complexity in the number of QP variables n. This effort
is similar to that of a standard active-set QP solver, but if transition between
the local MPC formulations is smooth, warm-starting usually leads to a reduced
number of iterations.

An implementation of this extension of the online active set strategy has been
successfully used to control a Diesel engine test bench at University of Linz,
Austria. Results of real-world experiments using a collection of local linear MPC
formulations have been presented in [76]; a simulation study based on linear
parameter varying models is described in [184].

The proposed extension is not only applicable for switching between different
local linear MPC formulations, but also for solving nonlinear MPC problems. In
this case a nonlinear programming problem (NLP) has to be solved instead of
a QP, as described in Chapter 6. This can be done efficiently using sequential
quadratic programming (SQP) methods that require to solve a whole sequence
of QPs with varying matrices and vectors at each sampling instant. When the
iterates produced by these SQP methods converge towards the solution of the NLP
problem, also the optimal active-set of the underlying QPs converges towards the
optimal one [201]. Therefore, warm-starting these QPs with the solution of the
previous one is expected to yield considerable computational savings even in the
presence of changing QP matrices.

3.4 Regularisation Procedure for Convex QPs

The online active set strategy as outlined in Section 3.1 is designed to solve strictly
convex QPs, i.e. it requires the QP Hessian matrix to be positive-definite. For
solving convex QPs, we propose an iterative regularisation procedure that makes
use of the homotopy framework and is easy to implement.

We can distinguish two different approaches to tackle convex QPs: either the
Hessian matrix is regularised in a certain way such that it becomes positive-
definite, or a direct handling of the semi-definiteness using suitable linear algebra
operations is combined with additional algorithmic safeguards (see, e.g., [103, 39]).
Regularisation schemes are easy to implement, whereas a direct handling often
causes significant modifications of the linear algebra routines that also might
increase the computational load of the algorithm. On the other hand, dealing with
semi-definite Hessian matrices directly promises to yield very accurate solutions,



44 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

while each regularisation changes the QP problem and therefore will usually only
produce less accurate approximations to a true solution. Based on the homotopy
framework of the online active set strategy, we propose an iterative regularisation
procedure that tries to combine the advantages of both approaches: an easy to
implement, efficient modification that can produce very accurate solutions.

The core idea of all regularisation schemes is to add a symmetric, positive-definite
matrix Hreg ∈ Sn≻0 to the QP Hessian matrix H ∈ Sn�0. A common choice is

Hreg = Hε
def
= ε · In with ε > 0 . (3.13)

In case H has a special structure causing the semi-definiteness, more sophisticated
choices than Hε might be used. Sticking to Hreg = Hε, this results in the following
regularised (parametric) quadratic program:

min
x∈Rn

1
2x

′Hx+ x′g(w) + 1
2x

′Hεx (3.14a)

s. t. Gx ≥ b(w) , (3.14b)

where we use the same notation as in Definition 2.5. However, whether a solution
of this regularised QP also is a solution for the original QP depends on the choice of
ε (see for example [92]). At least we are sure that every solution of the regularised
QP is feasible for the original one as both comprise identical constraints.

Choosing an appropriate value for ε is not straight-forward and problem
dependent:

• Choosing ε too large changes the original QP formulation a lot and thus
often leads to solutions that differ significantly from any optimal solution of
the original QP.

• Choosing ε too small, say in the order of the machine precision, might cause a
failure of a QP solver designed for strictly convex QPs as the Hessian matrix
becomes too ill-conditioned (note that the condition number of H + Hε is
proportional to 1

ε
).

In order to reduce the dependency of the solution quality on the choice of ε, we
propose to “re-centre” the regularisation term 1

2x
′Hεx around a point x̄ to yield

the following regularised (parametric) quadratic program:

min
x∈Rn

1
2x

′Hx+ x′g(w) + 1
2 (x− x̄)′Hε (x− x̄) (3.15a)

s. t. Gx ≥ b(w) . (3.15b)



REGULARISATION PROCEDURE FOR CONVEX QPS 45

The rationale behind this is the observation that if we could choose x̄ = xopt to be
the optimal solution of the original QP, the regularised QP would yield an exact
solution to the original QP independently of the choice of ε.

As we do not know xopt in advance, we propose the following iterative
regularisation procedure:

Algorithm 3.3 (iterative regularisation procedure)

input: (parametric) quadratic program QP(w0),
regularisation parameter ε > 0, maximum number of steps kmax

output: approximative solution x∗ to QP(w0)

(1) Set k = 0, x̄ = 0.

(2) Use Algorithm 3.1 to solve regularised QP (3.15) and obtain its solution x∗.

(3) Stop if k = kmax; otherwise set x̄ = x∗, increase k by one and continue with
step (2).

Algorithm 3.3 is a special case of a proximal point algorithm as introduced by [202].
Thus, the following convergence result holds: If all QPs (3.15) are solved exactly,
Algorithm 3.3 converges at a linear rate (and even within a finite number of steps)
towards a solution of the original QP [202].

The iterative regularisation procedure as summarised in Algorithm 3.3 solves
a sequence of QPs with changing values of the centring point x̄. But as the
regularisation term 1

2 (x− x̄) ′Hε (x− x̄) only changes the gradient of the original
quadratic program QP(w0) (plus a constant offset), this sequence of regularised
QPs can be solved within the usual homotopy framework of the online active
set strategy. This means that we can hot-start each regularised QP solution at
the optimal solution of the previous one which significantly speeds-up the overall
procedure. Numerical tests indicate that, once the first regularised QP has been
solved, only a small number of additional active-set changes are required to find
the solutions of successive regularised QPs for k ≥ 1. Thus, Algorithm 3.3 typically
provides considerably more accurate solutions than a single standard regularisation
at very limited extra computational load.

In order to illustrate the iterative regularisation procedure, its implementation
within the software package qpOASES (see Chapter 4) has been applied to a
collection of eight non-trivial convex QPs. These QPs comprise about 200
optimisation variables and up to 3000 constraints in order to handle infeasible



46 FAST LINEAR MPC USING THE ONLINE ACTIVE SET STRATEGY

MPC problems as discussed in Section 5.2. Figures 3.3 shows the relative error in
the optimal objective function value for different values of ε at different iterations
of Algorithm 3.3. Using a standard regularisation of form (3.14) required very
small values of ε to achieve acceptable results (see Subfigure 3.3(a)). In contrast,
already one or two iterations of the iterative regularisation procedure recovered
the optimal objective function value up to machine precision for moderate values
of ε.

(a) 0th iteration

(b) 1st iteration

(c) 2nd iteration

Figure 3.3: Relative error in the optimal objective function value for a collection
of non-trivial convex QPs when using the iterative regularisation procedure for
different values of ε.



Chapter 4

The Open-Source
Implementation qpOASES

One main contribution of this thesis is the software package qpOASES [79, 78],
an open-source implementation of the online active set strategy as presented
in Chapter 3. This chapter gives an overview of qpOASES, describing its main
features and outlining its software design. We explain how the implementation is
tailored to different QP types for solving them efficiently. Also an overview of the
available interfaces to third-party software packages and successful applications
of qpOASES to QPs arising in various control problems is given. Moreover, we
summarise ideas recently presented in [193] to increase the reliability of the
online active set strategy for ill-conditioned and degenerate QPs. These numerical
modifications and additional functionality to handle sparse QP matrices have also
been implemented into qpOASES, rendering it an efficient and reliable active-set
solver for general convex QPs [83]. Finally, Section 4.5 illustrates that qpOASES

can significantly outperform other popular academic and commercial QP solvers
on small- to medium-scale test examples.

4.1 Overview of the Software Package

4.1.1 Algorithmic Description

qpOASES implements the online active set strategy for solving convex QPs. As
described in Chapter 3, this strategy has been designed for solving QPs arising in
MPC very efficiently. qpOASES solves instances of parametric QPs of the following

47



48 THE OPEN-SOURCE IMPLEMENTATION QPOASES

form:

min
x∈Rn

1
2x

′Hx+ x′g(w0) (4.1a)

s. t. bB(w0) ≤ x ≤ bB(w0) , (4.1b)

bC(w0) ≤ Gx ≤ bC(w0) , (4.1c)

with a positive semi-definite Hessian matrixH ∈ Sn�0, a gradient vector g(w0) ∈ Rn

and a constraint matrix G ∈ Rm×n. In order to fully exploit the problem structure,
the constraint formulation was kept more general than the one in Definition 2.5.
Thus, qpOASES distinguishes between box constraints or bounds on the variables
given by the vectors bB(w0), bB(w0) ∈ Rn and general constraints involving the

constraint matrix G and the vectors bC(w0), bC(w0) ∈ Rm. It is worth to stress
that qpOASES can also solve non-parametric QPs as its implementation uses the
dependency of the QP data on w0 only implicitly.

The distinction between bounds and constraints can lead to substantial computa-
tional savings (see Section 4.2) and is very natural in the MPC context: bounds on
the control inputs also translate into bounds within the QP formulation, bounds
and constraints on the outputs or the differential states lead to general constraints
within the QP formulation.

qpOASES distinguishes two different ways to solve a QP of the form (4.1): First,
it can be solved by performing a cold-start, i.e. without any prior solution
information. This is the usual situation if just a single QP is to be solved or if the
QP is the first one of a whole sequence of parameterised QPs (as typically arising
in MPC). Second, provided that a QP with same dimensions has been already
solved before, the current QP can be solved by performing a hot-start based on
the optimal solution and the internal matrix factorisations of the previously solved
QP.

In both cases, each QP iteration of the online active set strategy requires one to
solve the KKT system (3.6). The way this is done does only affect computational
speed and accuracy but does not affect the iterates produced along the homotopy
path. qpOASES solves the KKT system by means of a null space approach (see
Section 2.3.1), though other choices would have been possible. We briefly outline
its main concept.

First, the active constraints matrix is decomposed by a modified QR decomposition
as proposed in [101]:

GAQ = GA

[
Z Y

]
=
[
0 T

]
, (4.2)



OVERVIEW OF THE SOFTWARE PACKAGE 49

where Z ∈ Rn×(n−|A|) forms an orthonormal basis of the null space of the active
constraints and T ∈ R|A|×|A| is a reverse lower triangular matrix. Second, the
Hessian matrix is projected to this null space and the resulting projected Hessian
matrix is then factorised by means of a Cholesky decomposition:

Z ′HZ = R′R , (4.3)

where R ∈ R(n−|A|)×(n−|A|) is an upper triangular matrix. Once these two matrix
factorisations have been set up, they allow for an efficient solution of the KKT
system (3.6) in O(n2) floating-point operations. In order to see this, we transform
the coordinates of the KKT system by the orthonormal matrix

(
Q 0

0 I|A|

)
. (4.4)

This yields the following transformed KKT system:




R′R Z ′HY 0

Y ′HZ Y ′HY T ′

0 T 0






∆xopt
Z

∆xopt
Y

−∆yopt
A


 =



−∆gZ
−∆gY
∆bA


 , (4.5)

where the subscripts Y and Z indicate a projection onto the range and null space
of the active constraints, respectively. This system of equations can now be solved
using forward and backward substitutions with the triangular matrices T and R:

∆xopt
Y = T−1∆bA , (4.6a)

∆xopt
Z = −R−1(R′)−1

(
∆gZ + Z ′HY∆xopt

Y

)
, (4.6b)

∆yA = (T ′)−1
(
∆gY + Y ′HZ∆xopt

Z + Y ′HY∆xopt
Y

)
. (4.6c)

Note that calculating these solutions can be further simplified by exploiting
common subexpressions and other structural information. qpOASES actually solves
an adapted variant of KKT system (3.6) to reflect the distinction between bounds
and constraints (see [77] for more details).

The null space approach is particularly numerically stable and does not rely on a
positive definite Hessian matrix. This facilitated the extension to convex QPs as
presented in Section 4.3 and is also numerically advantageous for QPs comprising
positive definite Hessian matrices with very small positive eigenvalues. However,
this comes at the expense that iterations are more expensive (than ones of the
range space approach) whenever the null space has high dimension, i.e. whenever
only a few constraints are active. On the other hand, computational savings due
to the distinction between bounds and constraints are “most readily achieved in
null space methods” [87].



50 THE OPEN-SOURCE IMPLEMENTATION QPOASES

While moving along the homotopy path, the set of active constraints is modified
by adding or removing a constraint in each iteration. However, it would be
too expensive to re-compute the TQ factorisation and Cholesky decomposition
in each iteration as they require O(n3) floating-point operations. Instead, in
order to compute the next step direction efficiently, these matrix decompositions
are maintained after each change in the set of active constraints by means of
Givens plane rotations [105, 110]. They reduce the effort to O(n2) floating-point
operations per iteration. qpOASES implements updating routines specially tailored
to the context where bounds and constraints are distinguished as proposed in [101].

4.1.2 Features

qpOASES has been designed to be most efficient when applied to small- to medium
scale1, dense QPs as arising in MPC after eliminating the states from the QP
formulation. It exhibits the following algorithmic and numerical features:

• qpOASES implements all features and extensions of the online active set
strategy as described in Chapter 3. Thus, it exploits the fact that linear
MPC leads to parametric QPs and allows hot-starting from previous QP
solutions or from any other initial guess without a Phase I. Moreover, it
implements the described real-time variant and the extensions to QPs where
also the matrices are changing.

• qpOASES is able to solve QPs with arbitrary constraints and positive semi-
definite Hessian matrices. In particular, this allows one to solve general MPC
problems comprising state or output constraints and semi-definite weighting
matrices Q, R and P .

• qpOASES has been tailored to fully exploit the structure of different QP
types as described in Section 4.2. For example, the distinction between
bounds and constraints can lead to substantial computational savings, in
particular if only bounds (i.e. bounds on the control inputs in the MPC
context) are present. Moreover, sparsity in constraint and Hessian matrix
can be exploited within matrix-vector operations, though the underlying
matrix factorisations are dense.

• The numerical modifications summarised in Section 4.3 provide provisions
to even solve ill-conditioned and degenerated QPs very reliably and exactly.
For example, qpOASES is able to solve all 70 test problems from the Maros-
Mészáros test set [167] comprising less than 1000 variables and not more than
1001 two-sided constraints (not counting bounds) up to high accuracy (see

1Say, not more than several hundred optimisation variables and not more than one to two
thousand constraints.



OVERVIEW OF THE SOFTWARE PACKAGE 51

Subsection 4.5). On the other hand, if the QP formulation is known to be
well-conditioned, any of these algorithmic modifications can be switched-off
to avoid computational overhead.

In addition, the following properties facilitate the use of qpOASES:

• It is open-source software released under the GNU Lesser General Public
License (LGPL) [134] and comes along with a detailed user’s manual and a
fully documented source code.

• It is implemented in an object-oriented manner as self-contained C++ code
(see Subsection 4.1.3).

• It offers various interfaces to third-party software and has been tested on
embedded hardware (see Sections 4.4 and 5.1).

4.1.3 Software Design

qpOASES is written as object-oriented C++ code as this offers advantages for both
developers and users. From a developer’s perspective, this allowed us to introduce
classes corresponding to different QP types. By inheriting common functionality,
code duplication is avoided and readability of the code is improved by introducing
a clear programme structure. Moreover, all internal data is hidden from the user.
This leads to a clean interface where the user provides the QP data along with a set
of algorithmic options and, after solving the problem, obtains the desired solution
information. Finally, encapsulating all data within a given QP object allows the
user to instantiate more than one QP object at once, which can be useful in certain
situations.

Another important design goal has been self-containedness of the code and
compatibility with different, also embedded, hardware platforms (also see the
discussion in Subsection 5.1.2). For this reason, qpOASES can be run stand-
alone without linking external libraries, though coupling the BLAS or LAPACK

libraries [31, 6] is supported. In fact, all matrix operations within qpOASES are
performed by customised C implementations of the required BLAS/LAPACK routines.
Therefore it does not come at a surprise that directly linking the BLAS/LAPACK

libraries hardly affects computational performance. As the use of C++ can create a
barrier to run the code on embedded hardware, advanced programming techniques
such as templates or virtual inheritance have been avoided (or made optional) to
increase the number of compatible compilers.

We will now outline the class structure of qpOASES as illustrated in Figure 4.1. The
class QProblemB provides all functionality necessary for solving simply bounded



52 THE OPEN-SOURCE IMPLEMENTATION QPOASES

Figure 4.1: UML class diagram illustrating the main functionality of qpOASES. For
clarity, only the most important members are shown for each class or enumeration.

QPs as described in Subsection 4.2.1. The class QProblem is derived from it and
implements all additional functionality required for solving QPs comprising general
constraints. Finally, the class SQProblem inherits all features of the QProblem

class and provides further functionality for handling QPs with varying matrices as
explained in Subsection 4.2.6. Hessian and constraint matrices are stored within



OVERVIEW OF THE SOFTWARE PACKAGE 53

a minimal Matrix class implementation in order to use tailored linear algebra
routines as explained in Subsection 4.2.5.

The user needs to instantiate an object of one of these three classes in order to
specify his QP (sequence) to be solved. Before solving a QP, the user can pass
an Options object specifying various algorithmic options [79] (otherwise default
values are used). In order to assist the user with specifying these options, the class
Options provides pre-defined settings optimised for solution speed or reliability,
respectively.

All these three classes QProblemB, QProblem and SQProblem make use of further
auxiliary classes: they possess a member of type Bounds or Constraints,
respectively, in order to store information on the bounds or constraints of a QP. In
particular, the classes Bounds and Constraints manage lists (of type Indexlist)
of free and fixed variables or active and inactive constraints, respectively. Both
classes are derived from a common base class SubjectTo.

Finally, all the above-mentioned classes use the MessageHandling class for
providing error messages, warnings or other information to the user in a unified
framework. This class makes use of the enumeration returnValue, which gathers
all possible return values of all qpOASES functions.

4.1.4 Computational Complexity

Practical upper bounds on the number of iterations for finding an optimal solution
are not available for active-set QP methods. In fact, even exponentially many
iterations might become necessary as illustrated for active-set LP solvers in the
famous example constructed in [149]. However, we stress that this worst-case
behaviour has not been reported in practice. It is even possible to prove upper-
bounds on the average number of LP iterations that only grow quadratically in the
number of variables and constraints (see [213] and the references therein). This
backs up the observation that the number of iterations required to solve convex
QPs usually grows very moderately in the number of QP variables and constraints.

When analysing the runtime complexity of qpOASES, we restrict the presentation to
the complexity of one single QP iteration as described in Algorithm 3.1: Obviously,
the computational effort for performing steps (1), (4), (5) and (7) is O(n + m),
i.e. it grows linearly in the number of variables n and the number of constraints
m. As qpOASES makes use of matrix updates for solving the KKT system (3.6) as
described in Subsection 4.1.1, both step (2) and (6) require O(n2) floating-point
operations (instead ofO(n3) andO(1), respectively, if the KKT matrix would be re-
factorised at each iteration). Finally, computational load of step (3) is dominated



54 THE OPEN-SOURCE IMPLEMENTATION QPOASES

by the O(nm) floating-point operations required to form the matrix-vector product
in Equation (3.7).

Thus, we can conclude that the overall runtime complexity of one iteration of
qpOASES is O(n2 + nm). The leading coefficient of the n2 term depends on
the number of active bounds and constraints and typically varies between 2 and
13 [77]. This also implies that the step length determination in step (3) might
become the major share of the computational load of each iteration if the QP
formulation comprises many more constraints than optimisation variables (see
Subsections 4.2.4 and 4.2.5 for possible remedies).

The exact storage complexity of qpOASES depends on different aspects, in
particular on whether the QP formulation comprises only box constraints or also
general ones and on whether QP matrices are given in dense or sparse matrix
format. For solving a dense QP formulation comprising general constraints,
4n2 + nm + O(n + m) floating-point numbers need to be stored; they represent
the dense Hessian and constraint matrix as well as matrices comprising the dense
Cholesky decomposition and the dense TQ factorisation, respectively.

4.2 Solution Variants for QPs with Special Properties

This section explains how qpOASES has been tailored to special QP types in order
to speed-up computation by exploiting their respective properties.

4.2.1 Box Constraints

An important sub-class of general QPs of form (2.9) are those that only comprise
bounds (or box constraints):

min
x∈Rn

1
2x

′Hx+ x′g(w0) (4.7a)

s. t. bB(w0) ≤ x ≤ bB(w0) . (4.7b)

These QPs can arise from various applications, in particular from MPC formu-
lations that only comprise bounds on the control inputs but no output or state
constraints.

This special form can be exploited within the QP algorithm for speeding up the
computation: First, as G becomes the identity matrix in Equation (4.2), the TQ
factorisation becomes trivial. Thus, initially computing and updating can be done



SOLUTION VARIANTS FOR QPS WITH SPECIAL PROPERTIES 55

at virtually no cost. Second, also projecting the Hessian matrix to the null space of
active constraints becomes very cheap, as it suffices to only access the Hessian at
indices corresponding to inactive bounds. Both also simplify the determination of
the next step direction via Equation (3.6). These computational savings typically
speed-up each single QP iteration by about a factor of three (compared to an
implementation where bounds would be treated as general constraints). Moreover,
as QP (4.7) only comprises n constraints, the number of active-set changes is
typically lower than for QPs also comprising general constraints.

In order to fully benefit from these simplifications, qpOASES implements the special
class QProblemB. It also requires less storage as no internal data members are
allocated for storing general constraints and the TQ factorisation.

4.2.2 Trivial Hessian Matrix

The Hessian matrix is considered trivial if and only if it is the zero or identity
matrix. If this is the case, several simplifications of the internal linear algebra
operations are possible that cut down computational load by typically a factor
of about two. Obviously, these simplifications affect all calculations involving the
original or the projected Hessian matrix.

qpOASES automatically checks whether the Hessian matrix is trivial whenever
it is passed to one of the QP objects. It is also possible to directly provide
this information within the constructor call. This saves the small overhead for
determining the Hessian type and also avoids allocating internal memory for
storing the Hessian matrix.

If the Hessian matrix is zero, the (parametric) QP (2.9) is actually a (parametric)
linear programming problem:

LP(w0) : min
x∈Rn

x′g(w0) (4.8a)

s. t. Gx ≥ b(w0) . (4.8b)

This kind of problems can be tackled using either of the strategies described in
Section 4.2.3. However, as qpOASES is not a dedicated (parametric) LP solver,
using it for solving LPs can be inefficient. Nevertheless, the ability to also solve
LPs can be a useful feature in situations where computational time is not the main
concern.

QPs whose Hessian is the identity matrix naturally arise from (unweighted)
ℓ2 norm minimisation problems. Moreover, every strictly convex QP can be



56 THE OPEN-SOURCE IMPLEMENTATION QPOASES

transformed into an equivalent one whose Hessian is the identity matrix by
means of a suitable coordinate transformation. However, such a coordinate
transformation only makes sense from a computational point of view if the QP
comprises general constraints as it usually transforms box constraints into general
ones.

4.2.3 Positive Semi-Definite Hessian Matrix

qpOASES provides two different strategies to deal with QPs that are convex but
not strictly convex. The first one is the regularisation procedure as described
in Section 3.4 and summarised in Algorithm 3.3. It is computationally cheap
and works well if the regularised QP is numerically well-posed. A second strategy
introduces so-called flipping bounds and zero-curvature tests and will be described
in more detail in Section 4.3. This second one is usually computationally more
expensive but tackles the semi-definite problem directly.

4.2.4 Many Constraints

As mentioned in Subsection 4.1.4, the computational load of each QP iteration
can be dominated by the evaluation of the matrix-vector product Gx (with x
being the current primal QP iterate) if the QP comprises many more constraints
than optimisation variables. For such situations, qpOASES implements a technique
that can speed-up computation by avoiding evaluation of the full matrix-vector
product. We summarise its main idea and refer to [77] for mathematical details:
Instead of computing G′

ix for determining whether the inactive constraint i ∈ I

might become active at the current iteration, an estimate for the distance of this
product from its limits bCi

(w0)/bCi(w0) is kept. Based on the norm of the current
primal step ∆x, one can reliably decide whether constraint i can become active or
not. If so, the product G′

ix needs to be computed to ensure a correct behaviour
of the algorithm. Otherwise, this computation can be skipped and the distance
estimate is updated at constant complexity.

In order to work efficiently, this technique requires normalisation of all rows of
matrix G in a pre-processing step. Normalisation needs to be done with respect
to a norm that is dual to the one used to calculate ‖∆x‖. The current version of
qpOASES relies on an ℓ1 norm normalisation of the constraint rows and employs
the computationally cheap maximum norm for the step direction.

The described technique only makes sense if evaluation of G′
ix has O(n) complexity.

If G is sparse or structured in a way that allows for a faster evaluation, the
functionality described in Subsection 4.2.5 should be used instead.



SOLUTION VARIANTS FOR QPS WITH SPECIAL PROPERTIES 57

4.2.5 Sparse QP Matrices

qpOASES has been developed for small- to medium scale QPs resulting from MPC
formulations after the differential states have been eliminated. These QPs usually
feature a fully dense Hessian matrix and a lower triangular constraint matrix.
Consequently, the internal matrix factorisations have been implemented as dense
linear algebra routines.

In order to exploit possible additional sparsity in the constraint matrix, the class
ConstraintProduct has been introduced. It allows the user to provide a routine
that calculates the matrix-vector product Gx more efficiently than a standard
multiplication. This can save a considerable amount of computation per iteration
in case the QP formulation comprises many constraints (cf. Subsection 4.1.4). A
typical source of sparsity in the constraint matrix are bounds on the input rate.
They couple exactly two optimisation variables—and thus cannot be expressed
as box constraints—leading to exactly two non-zero entries in each corresponding
column of G. Another reason for a partly sparse constraint matrix can be the
introduction of slack variables (e.g. to handle QP infeasibilities as discussed in
Section 5.2).

For enhancing qpOASES’s applicability to general QPs, the idea to exploit sparsity
of the constraint matrix has been recently extended in order to support general
sparse QP matrices. For doing so, a minimal Matrix base class has been
introduced2 that encapsulates all matrix operations. This framework allows to
easily switch between special linear algebra routines for dense and sparse QP
matrices, respectively, and to exploit possible symmetry of them (see Figure 4.2).
It would also facilitate to include further specialisations of the linear algebra
operations, e.g. for exploiting the rank structure as mentioned in Subsection 2.1.4.
Sparse matrices are stored in column compressed storage format [71].

4.2.6 Varying QP Matrices

As explained in Section 3.3, the online active set strategy can also be extended
to parametric quadratic programs QPH,G(w0) with varying matrices. Instead of
performing a cold-start for a QP with new matrices, this idea allows one to warm-
start at the previous QP solution based on the previous optimal active-set and
can help to reduce the computational effort. qpOASES implements this extension
within the class SQProblem as summarised in Algorithm 3.2.

2This extension has been initiated by Andreas Potschka, who also realised most of the
implementation.



58 THE OPEN-SOURCE IMPLEMENTATION QPOASES

Figure 4.2: UML class diagram illustrating the matrix class hierarchy of qpOASES

in order to use tailored linear algebra routines. For clarity, only the most important
members are shown for each class.

4.3 Numerical Modifications to Increase Reliability

Though qpOASES is based on numerically stable matrix factorisations, namely a
modified QR factorisation and a Cholesky decomposition, the online active set
strategy can encounter numerical difficulties when solving certain QPs. Two main
reasons can be distinguished:

• First, the QP can be ill-conditioned leading to projected Hessian matrices
with large condition numbers. This can either be due to Hessian matrices
with greatly varying eigenvalues or due to constraints that are very close to
being linearly dependent3.

• Second, the minimum determining the homotopy step length in Equa-
tions (3.7) can be attained for more than one constraint at once. In this
situation, usually called a tie [237], it is not clear which of these constraints
shall be added or removed. This can lead to repeated addition and deletion
within a fixed subset of constraints causing cycling of the algorithm. The
phenomenon of cycling is common to all active-set QP methods and “most
QP implementations simply ignore the possibility of cycling” [178]. However,
for solving QPs reliably, this issue needs to be addressed (for example by
following one of the approaches described in [102, 88]).

3Exact linear dependence of the constraints is usually less of a problem as the linear
independence test in step (5) of Algorithm 3.1 can prevent a linearly dependent constraint from
being added to the current working set.



NUMERICAL MODIFICATIONS TO INCREASE RELIABILITY 59

In the following subsections we briefly summarise ideas proposed in [193] to tackle
these issues for increasing the reliability of the QP solution. These ideas have
also been implemented into qpOASES and can optionally be used if necessary or
desired [83].

4.3.1 Dealing with Rounding Errors and Ill-Conditioning

In order to reduce the influence of ill-conditioned projected Hessian matrices on
the computation of the step direction, iterative refinement can be employed when
solving the linear system (3.6). Iterative refinement (as originally proposed in [241])
recovers in each iteration a fixed number of extra valid digits of the solution of the
linear system, provided that the refinement step is performed with higher precision.
However, numerical accuracy is typically also improved if residuals are computed
only at working precision (so-called fixed precision iterative refinement) [217, 125].
Thus, iterative refinement can be helpful whenever the condition number of the
KKT matrix in (3.6) is only a few orders of magnitude smaller than the inverse
of the machine precision. Its additional computational cost amounts in each
iteration to one matrix-vector multiplication and one backward substitution with
the matrix decomposition of the KKT matrix, which is moderate compared to the
computational cost of a full QP iteration. qpOASES allows one to specify the desired
non-negative number of fixed precision iterative refinement steps per QP iteration.
Monitoring the norm of the iterative refinement residuals in consecutive iterations
could also help to detect increasing ill-conditioning of the matrix factorisations
due to the use of matrix updates.

A second idea aims at preventing the accumulation of rounding errors in the
QP solution over multiple iterations, which can become large for ill-conditioned
problems. Repeatedly updating the constraint vector b(w0) and the dual solution
vector y(w0) in each QP iteration might render them inconsistent. For example,
a component bi(w0) corresponding to an active constraint i might not exactly
match the value G′

ix(w0) or the corresponding dual multiplier yi(w0) might have a
small negative entry (instead of a non-negative one). The so-called drift correction
changes the values of b(w0) and y(w0) straight-forwardly to consistent values and
afterwards modifies the QP gradient as follows:

g(w0)
def
= Hx(w0)−G′y(w0) . (4.9)

That way the current QP is slightly perturbed such that the current solution
is an exact one, i.e. the drift correction actually introduces tiny kinks into the
homotopy path. However, this allows the algorithm to annihilate all rounding
errors in the QP solution before performing the next QP iteration. The drift
correction increases computational load mainly by the two extra matrix-vector
multiplications in Equation (4.9), which might become quite expensive compared



60 THE OPEN-SOURCE IMPLEMENTATION QPOASES

to the overall QP iteration in certain situations. Therefore, and because it is
often superfluous to perform a drift correction in each QP iteration even for ill-
conditioned QPs, qpOASES allows the user to specify a frequency at which drift
corrections are to be performed (if at all).

A third idea to avoid ill-conditioning of the Cholesky factors R due to tiny
eigenvalues of the Hessian matrix is the introduction of flipping bounds. The
main idea is to check upon removal of an active constraint (or bound) whether the
new diagonal elements of R drops below a certain threshold. If so, the constraint
remains active but the intermediate QP data is changed such that it is active at
its opposite limit (e.g. an active upper bound will become an active lower bound).
qpOASES provides options to enable the use of flipping bounds and to adjust this
threshold. As all matrix decompositions remain valid in case one needs to flip, the
computational overhead is low.

The flipping bound strategy requires that the projected Hessian matrix is
numerically positive definite at the beginning. This can be easily achieved
by starting the homotopy such that all bounds are fixed in the beginning (as
described in Section 3.2) leading to a projected Hessian matrix of dimension zero.
Moreover, it requires that all bounds and constraints do have lower and upper
limits. To ensure this, Potschka et al. [193] suggest to introduce so-called far
bounds. Artificial limits are introduced for all bounds and constraints that do
not have such limits within the QP formulation. By successively increasing the
absolute value of these limits, it can be ensured that no such artificial limit will stay
active at the solution (otherwise it can be concluded that the QP is unbounded).

4.3.2 Dealing with Ties

A rigorous approach for resolving ties has been presented in [237] where an
auxiliary QP is solved at each tie. However, as this would be an inadequate
computational overhead for the online context, qpOASES by default uses a much
simpler heuristic that works very well in practice: if a tie occurs, constraint removal
is preferred over constraint addition and if this is not sufficient to break the tie,
the constraint with smallest index is removed.

An alternative heuristic, called ramping, has been proposed in [193] and is also
implemented within qpOASES. It basically aims at avoiding ties by adding mutually
different offsets to the constraint and dual solution vectors. Afterwards, the
gradient vector is modified in a very similar way as described in Equation (4.9) to
restore a consistent QP solution.

One should note that ties cannot be avoided in certain cases, e.g. if the QP solution
lies at a point where the LICQ does not hold. In such cases the ramping strategy



INTERFACES AND APPLICATIONS 61

aims at postponing the occurrence of ties to the very last step along the homotopy,
where there is no need to resolve them anymore as the QP solution is already
found. However, this reasoning is questionable in the online context when a whole
sequence of QPs is to be solved.

4.4 Interfaces and Applications

qpOASES comes along with a couple of interfaces to third-party software that also
facilitate to run the code on embedded hardware. This section gives an overview
of these interfaces and outlines a couple of real-world applications.

4.4.1 Interfaces for Matlab, Octave, Scilab and YALMIP

qpOASES can be directly compiled and used within Matlab, allowing a user to
run the solver without touching its C++ source code. For example, a single QP
can be solved by calling

[x,fval,exitflag,iter,lambda] = qpOASES( H,g,A,lb,ub,lbA,ubA,x0,options )

Besides the usual data specifying a QP of the form (4.1), an initial guess for the
primal solution and a set of options can be passed. If no initial guess is given, the
usual homotopy starting at the origin is performed (see Subsection 3.2.1). Options
can be generated using the qpOASES options command in order to retrieve the
full functionality of the C++ version. The output arguments contain the optimal
primal solution vector as well as optionally the optimal objective function value,
a status flag, the number of iterations actually performed, and the optimal dual
solution vector, respectively.

The Matlab interface automatically detects whether the QP only comprises box
constraints and internally instantiates the corresponding QP object. Moreover, it
is possible to pass QP matrices in sparse format. This standard interface always
performs a cold-start taking into account the guess for the primal solution (if
specified), but also variants exist for solving whole sequences of QPs using all
features of the online active set strategy.

In order to support open-source alternatives to Matlab, qpOASES provides similar
interfaces to Octave [72] and scilab. Moreover, qpOASES has been interfaced to
YALMIP [162], a modelling language for solving convex and nonconvex optimisation
problems.



62 THE OPEN-SOURCE IMPLEMENTATION QPOASES

4.4.2 Running qpOASES on dSPACE and xPC Target

qpOASES also provides an interface to Simulink that allows the user to compile
the code within a C MEX S-function. Different variants interfacing the QProblem,
QProblemB and SQProblem class to the Simulink workspace are available (see
Figure 4.3). The S-function block expects all QP data to be given in signal form.
It outputs the first piece of the primal solution (corresponding to optimised control
inputs on the first interval of the prediction horizon), the optimal objective function
value, a status flag and the number of actually performed QP iterations.

Figure 4.3: Illustration of the Simulink interface of qpOASES.

The Simulink interface also allows one to conveniently compile qpOASES onto
dSPACE or xPC target hardware by means of the Simulink Real-Time
Workshop [135]. The main requirement is the availability of a C++ compiler for the
respective hardware. Compilation of qpOASES has been tested for dSPACE boards
version 5.3 or higher together with the dSPACE C++ Integration Kit version 1.0.2
or higher. Also successful use on xPC target hardware has been reported (see
below).

4.4.3 Real-World Applications

During the last few years, qpOASES has been used by many researchers for a
wide range of applications. We only mention a number of academic real-world
applications:

• MPC of a Diesel engine test bench at University of Linz, Austria, on
dSPACE hardware at sampling times of 50 milliseconds [76, 184];

• MPC of beam tip vibrations at Slovak University of Technology, Bratislava,
Slovakia, on an xPC target at sampling times of 10 milliseconds [223, 222];



NUMERICAL PERFORMANCE 63

• trajectory planning for a boom crane at University of Stuttgart, Germany,
similar to the one described in [9], on dSPACE hardware at sampling times
in the order of 100 milliseconds;

• time-optimal control of machine tools at K.U. Leuven, on dSPACE and xPC

hardware at sampling times in the order of 4–10 milliseconds [231, 232, 230];

• solving QPs for controlling a tendon-driven robot platform at ETH Zurich,
Switzerland, on a Standard PC [175, 197];

• simulations on optimisation-based clipping of audio signals at K.U. Leuven,
on a Standard PC [57].

Moreover, two industrial applications of qpOASES are presented in detail in
Chapter 5.

4.5 Numerical Performance

This section concludes the description of qpOASES by commenting on its numerical
performance, namely its reliability and computational efficiency. The presented
examples show that qpOASES can significantly outperform existing QP solvers, but
we do not state that this is true for arbitrary problems.

4.5.1 Reliability

In order to investigate qpOASES’s reliability, we use it to solve convex QP problems
from the Maros-Mészáros test set [167]. As qpOASES has been designed for solving
small- to medium-scale QPs, we restrict our analysis to the 70 convex test problems
comprising less than 1000 variables and not more than 1001 two-sided constraints
(not counting bounds). We determine the fraction of successfully solved problems4

and compare this number to the ones obtained by employing a couple of popular
academic and commercial QP solvers to the same test problems, namely Matlab’s
quadprog, OOQP [94] and CPLEX [53] (using its primal and dual active-set as well
as its interior-point solver). Each solver is run via its Matlab interface using its
algorithmic default settings5.

Table 4.1 summarises the obtained results6, which allow to draw the following two
conclusions: First, though all QP problems of the Maros-Mészáros test set are

4A QP problem is considered successfully solved if the provided optimal solution does not
violate the KKT optimality conditions (see Theorem 2.2) by more than 10−2.

5Better results might be obtained by adjusting these settings.
6These tests have been set up and performed by Andreas Potschka and the complete results

are to be published in [83].



64 THE OPEN-SOURCE IMPLEMENTATION QPOASES

convex, it contains plenty of challenging problems that are hard to solve even for
well-established QP solvers. These problems are either numerically ill-conditioned,
highly degenerated or nearly infeasible. Second, only qpOASES is able to solve all
70 small- to medium-scale QPs of this test set, which illustrates the mature state of
its implementation. Moreover, we note that QP solutions obtained by qpOASES are
usually very accurate (with a maximum violation of the KKT optimality conditions
of less than 10−5).

Solver name Fraction of problems
successfully solved

quadprog 62 %

OOQP 70 %

CPLEX-IP 73 %

CPLEX-Primal 96 %

CPLEX-Dual 97 %

qpOASES 100 %

Table 4.1: Fraction of small- to medium-scale problems from the Maros-Mészáros
test set successfully solved by the respective solver with default settings.

4.5.2 Computational Efficiency

In order to judge on the computational speed of qpOASES, the above test setup is
not particularly suited for several reasons. First, qpOASES has been designed for
use in model predictive control but the stand-alone QP instances of the test set do
not allow it to benefit from its hot-starting features. Second, the QP problems of
the test set are not very representative for those arising in MPC with respect to
both numerical conditioning and problem structure (e.g. most of them comprise
equality constraints). Third, the runtimes obtained via CPLEX’s Matlab interface
either show a significant offset (when measured externally) or are accurate only up
to 0.01 seconds (when measured internally), rendering them useless for small-scale
problems. Nevertheless, we can summarise that qpOASES is competitive with OOQP

and outperforms quadprog significantly.

It is more reasonable to explore qpOASES’s computational efficiency based on QP
problems arising within the MPC context. We compare its runtime with those of
QP solvers generated by the CVXGEN tool [169] (see Section 8.2 for more details).
For doing so, we run each of the two nonlinear MPC scenarios as presented in
Section 8.3 with each of these two online QP solvers and compare their respective
worst-case runtime. We use an embedded variant of qpOASES (using static memory
only) and allow for warm-starting the QP solution (note that hot-starting is not



NUMERICAL PERFORMANCE 65

possible as QP matrices are changing in each MPC loop). All tests are performed
on a standard PC (Intel Core 2 Duo P9700) having a 2.8 GHz dual-core processor
and 4 GB RAM.

Table 4.2 summarises the obtained worst-case runtimes and shows that qpOASES

seems to be competitive for these QP problems. Similar observations have been
made in [251].

qpOASES CVXGEN7

CSTR, 2 control inputs, 20 intervals 0.15 ms 0.25 ms

Kite, 2 control inputs, 10 intervals 0.04 ms 0.09 ms

Table 4.2: Worst-case runtime of qpOASES (using warm-starts) and CVXGEN when
running the two nonlinear MPC scenarios of Section 8.3.

Finally, we note that computational performance of qpOASES has been also
compared to that of the interior-point solver of MOSEK [8] for time-optimal MPC of
a linear motor drive system. The following runtimes have been reported in [230]:
while qpOASES performed slightly faster than MOSEK when using cold-starts, it
outperformed MOSEK by a factor of 10 when using dedicated hot-starts as described
in Section 3.2.

7The reported runtimes for CVXGEN have been obtained by compiling the solvers using the -O3

flag of the GNU C compiler as this led to much better runtimes than the default option -Os.
Moreover, the CVXGEN option better start has been set to the value that resulted in the lowest
runtime.





Chapter 5

Practical Issues and Industrial
Case Studies

Having introduced the theoretical background of the online active set strategy in
Chapter 3 and its open-source implementation qpOASES in Chapter 4, we will now
focus on a number of further practical issues arising in real-world applications.
We present two industrial case studies in which MPC based on qpOASES has been
successfully applied: emission control of an integral gas engine using embedded
controller hardware (see Section 5.1) as well as feasibility management for linear
MPC for applications in the process industry (see Section 5.2). Both case studies
not only provide deeper insight into practical requirements of MPC software like
implementation issues or the need to handle infeasible QPs. They have also led to
novel theoretical ideas for dealing with the encountered challenges. In particular,
the first case study motivated the use of an asymmetric cost function to improve
control performance for processes described by Wiener models, while the second
case study motivated the development of a novel strategy to efficiently handle
infeasible QPs.

5.1 Industrial Case Study I:

Emission Control of Integral Gas Engines

Our first case study aims at reducing the amount of nitrogen oxide (NOx)
emitted when running integral gas engines. For doing so, an adapted version
of qpOASES has been integrated into an embedded engine controller developed by
Hoerbiger Control Systems AB in Sweden. After summarising the MPC setup,

67



68 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

we discuss a couple of software issues that seem to be crucial for MPC software
running on embedded hardware in industrial applications. Finally, we show how
control performance of the considered gas engine was improved by introducing
an asymmetric cost function to the MPC formulation. We generalise this idea to
processes described by Wiener models and formulate conditions under which these
processes can be controlled by linear MPC despite the model nonlinearities.

5.1.1 MPC of Integral Gas Engines

We consider an integral gas engine of type Clark TLA 6 as it is used for example
in the pipeline network of the United States (see Figure 5.1). We closely follow
the description in [2] and refer to [7, 132] for more details: The integral gas engine
consists of a turbocharged 2-stroke reciprocating gas engine with counterflow
scavenging and a reciprocating compressor. Both act on the same crankshaft,
as the name “integral engine” suggests. The engine has 6 combustion and 3
compressor cylinders. It is typically operated in a narrow range with engine speeds
of 280–300rpm and relative fuel to air ratio of 0.55–0.62.

(a) Schematic drawing (taken from [7]),
abbreviations are explained below.

(b) Clark TLA 6 at site in Newberry Springs,
United States (taken from [2, 132]).

Figure 5.1: Integral gas engine of first industrial case study.

The engine speed n is affected by the crankshaft torque T and can be controlled
by the so-called governor fuel command (GFC). The GFC represents the valve
position of the fuel supply and directly influences the injection pressure and thus
also the amount of fuel injected to the combustion cylinders. The fuel to air
ratio φ is controlled via the wastegate (WG), i.e. the opening position of the
turbocharger turbine bypass, while the ignition timing is usually kept constant.
The power output can be adjusted with the compressor load by adding or removing
discrete amounts of compressor clearances (pockets). In standard operation these



INDUSTRIAL CASE STUDY I: EMISSION CONTROL OF INTEGRAL GAS ENGINES 69

pockets are used to maintain almost constant engine power according to the slowly
changing pipeline conditions. The considered integral engine has 6 small and
3 big pockets resulting in 28 possible load stages (LS). The steady-state values
of two adjacent load stages differ by about 3 %. However, due to imperfect
synchronisation of the pocket switching, substantial NOx peaks arise during the
transition between certain load stage changes.

Standard control configurations implemented as programmable logic controller
(PLC) use single input single output (SISO) PID controllers, neglecting the fact
that in particular φ has a strong coupling with the injected fuel amount [2].
Therefore, a—multiple input multiple output (MIMO)—linear MPC controller
has been designed based on a discrete-time linear optimal control problem similar
to (1.11).

The optimal control problem formulation comprises a linear grey-box model of the
gas engine. This model is composed of parts obtained via system identification
techniques and dynamic equations based on physical insight. The model comprises
at least nx = 22 differential states (including auxiliary states to model time delays)
and nu = 2 control inputs: the rates of change of the waste gate position and the
governor fuel command. Both the rates of changes as well as the (integrated)
actual value of the waste gate position and the governor fuel command are limited
by bounds. Deviations of two controlled variables, the engine speed n and the fuel
to air ratio φ, from their respective desired setpoints are penalised by a quadratic
objective function. More details can be found in [7].

The MPC formulation uses a prediction horizon of about 300 time steps and a
control horizon of 5–7 intervals (i.e. the control inputs at later time steps are
fixed and thus do not enter the QP as optimisation variables). As the ratio nx

nu

is very large compared to the length of the control horizon, it is much more
efficient to eliminate the states from the QP formulation before the runtime of
the process (see Subsection 2.1.4). The resulting small-scale, dense QP comprises
10–14 (bounded) optimisation variables and up to several hundred constraints. For
applying MPC to a real integral gas engine, this QP needs to be solved reliably in
a small fraction of the sampling time of 100 milliseconds as several other tasks
like communication and state estimation need to be performed by the engine
controller during each sampling time. Moreover, all computations are performed
on an embedded PowerPC whose computational power is many times lower than
that of a standard PC.

For solving the resulting dense QPs in real-time, qpOASES has been integrated
into the Hoerbiger Advanced Engine Controller [1]. Afterwards, the complete
MPC controller has been successfully tested at the SoCalGas compressor station in
Newberry Springs, California, United States. We summarise the results presented
in [7]: both when decreasing the compressor work load as well as when increasing



70 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

Figure 5.2: Comparison of NOx emissions during a load increase: standard PLC
(solid) vs. MPC using qpOASES (dashed) [7].

it, the MPC controller clearly outperformed the standard PLC. MPC was able to
reduce the variations of the fuel to air ratio by 20–80 %, which led to significantly
reduced NOx emissions as shown in Figure 5.2. During this field test, the embedded
variant of qpOASES worked without problems. The allowed maximum number of
iterations per QP solution was only sporadically reached and the real-time variant
described in Subsection 3.1.2 turned out to be a reasonable heuristic in these cases.

5.1.2 Software for Embedded Optimisation

Optimisation software written for use in embedded applications1 has to meet
different specifications than software written for academic purposes. This is
particularly true if the code is going to be used in an industrial context. This
subsection aims at summarising and discussing a number of issues that have
been important for reliably integrating qpOASES to an embedded MPC controller.
As most of them were also encountered during different projects with industrial
partners, they are believed to be of general relevance.

The following first set of requirements applies to basically any code used in an
industrial context and is independent of the employed hardware:

• The software has to include a detailed documentation (see [218]) describing
how to use the software, making the user aware of actions that might cause an
unwanted or even unsafe behaviour of the software, and enabling (external)
developers to maintain it.

1The notion “embedded” is used in various contexts. For our discussion on embedded software
for MPC, we assume the following, informal definition: An embedded application requires
the optimisation software to run reliably without user-interaction, on PC-like hardware with
computing power much lower than that of a standard PC, possibly with less accurate arithmetic.



INDUSTRIAL CASE STUDY I: EMISSION CONTROL OF INTEGRAL GAS ENGINES 71

• The software has to run highly reliably under all circumstances that might
occur during its use on the target hardware. Most often this can only be
verified by exhaustive testing but also certain programming techniques can
help reducing possible bugs. Additionally, a thorough exception handling
has to ensure that the software stops in a well-defined manner in case of
a failure, such that higher-level logic can react to such an event (e.g. by
switching to a stabilising default controller).

• The software should come with an on-target verification procedure allowing
one to check whether it is operational after installing it on a target hardware.

• The software should be released under a suitable licence. For example, the
GNU Lesser General Public License [134] offers the possibility to keep the
optimisation part of the code open-source for scientific use while all other
parts can remain proprietary to the company using it.

In addition to these more general requirements, the following guidelines enhance
usability of the optimisation software on embedded hardware and help reducing
the risk of software bugs:

• The software should be written in a compilable (higher-level) programming
language to ensure maximum efficiency. Most rapid prototyping solutions
support C or C++, sometimes also FORTRAN or small ADA can be used.

• The code should be as self-contained as possible in order to mostly avoid
linking external libraries. These libraries often increase the size of the
compiled code significantly and might even not be available for the embedded
platform (due to compiler or licence issues). Even the number of included
standard library headers should be reduced to a minimum.

• Restricting the code to static memory allocations excludes the risk of memory
leaks and also avoids the computational overhead of dynamic memory
allocations [59]. Moreover, when using C++, local variables requiring a
significant amount of memory should be made static to avoid large automatic
memory allocations on the stack.

• Many embedded hardware platforms do not support double precision
arithmetic or need to emulate it in software (greatly slowing down execution).
Thus, the code should be written in a way that allows to switch between
single and double precision arithmetic. It goes without saying that a well-
conditioned formulation of optimisation problems to be solved is even more
crucial when using single precision.

• Depending on the concrete setup, certain programming constructs might not
be allowed, e.g. the use of virtual functions, templates, Boolean variables
etc.



72 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

• Console output or exchanging data from files is useful for testing the
software on a standard PC but is often not available on embedded hardware.
Thus, this functionality might be made optional, e.g. by introducing a
corresponding compiler flag.

5.1.3 Linear MPC of Wiener Systems

We have seen in Subsection 5.1.1 that MPC was able to significantly reduce NOx

emissions of an integral gas engine compared to standard PLC. However, as NOx

emissions depend nonlinearly on the actually controlled fuel to air ratio, we will
present an idea of how linear MPC can be modified to perform even better. Our
description is based on [2] but presents a simpler and more efficient re-formulation
of the MPC problem.

Model predictive control of the integral gas engine can make use of rather accurate
linear ODE models describing the fuel to air ratio φ. As the amount of NOx

emissions is roughly proportional to φ within the relevant operating range (see
Figure 5.3), linear MPC can be used to control φ in order to reduce NOx emissions.
In the following, we develop a better description of the NOx emissions by adding
a static nonlinearity to the linear model describing φ. This leads to a special class
of ODE models, where we restrict the presentation to discrete-time formulations:

Definition 5.1 (discrete-time Wiener model): A discrete-time linear ODE
system (with linear output zk ∈ Rny) together with a static nonlinear map
h : Rny → Rny describing the output yk ∈ Rny of the system

xk+1 = Axk +Buk (5.1a)

zk = Cxk +Duk (5.1b)

yk = h(zk) (5.1c)

is called a Wiener model. Within this section, we make the standing assumption
that h is invertible. �

There are two practical interpretations of Wiener models [2]:

• The nonlinear map might be interpreted as the sensor characteristic when
measuring the actual linear output zk. Assuming the function h to be
invertible, the nonlinearity can be easily compensated in such a case.

• If the nonlinear map describes the actual output to be regulated, like the
NOx emission in our case, the controller has to take it into account in order
to avoid linearisation errors.



INDUSTRIAL CASE STUDY I: EMISSION CONTROL OF INTEGRAL GAS ENGINES 73

Also in the second case, regulating the linear output z to the time-constant

reference value zref
k

def
= h−1(yref

k ) is equivalent to regulating the nonlinear system
to yref

k . However, this equivalence does not hold during transient conditions or in
case of output constraints.

Though Wiener models can provide superior descriptions of systems with nonlinear
gains, only little work has been done focussing on MPC based on Wiener models.
Norquay et al. [179] suggest to eliminate the static nonlinearity and apply standard
linear MPC to a pH neutralisation experiment. The use of robust linear MPC
employing bounds on the static nonlinearities has been proposed in [32].

If the controller needs to be based on system dynamics modelled in form of a
Wiener model, a standard linear MPC formulation cannot be used anymore. In
fact, without additional assumptions on the nonlinear static output map, the
discretised optimal control problem will usually result in a nonconvex, nonlinear
programming problem (NLP). This loss of structure increases the computational
load for solving these problems significantly and, due to the lack of convexity,
the solver might even get stuck in a local minimum. While keeping convexity for
systems with nonlinear dynamics is almost hopeless (see [12] for a few limited
exceptions), this property remains for optimal control problems comprising a
Wiener system if the nonlinear map h satisfies the following conditions:

Lemma 5.1 (MPC with Wiener models): Let a discrete-time MPC problem
of the form (1.11) but comprising a discrete-time Wiener model (5.1) be given. If

‖h‖22 is convex, then the resulting NLP has a convex objective function (1.11a).

Figure 5.3: NOx emission of the considered integral gas engine as a function of the
fuel to air ratio φ (taken from [2]). Note that this function is invertible within the
considered operating range only.



74 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

Moreover, if h is chosen such that also the inequality constraints (1.11e) describe
a convex set of feasible points, the resulting NLP is also convex. �

Proof: Convexity of the NLP objective function follows directly from the following
observation: If ‖h‖2

2 is convex, also h(zk)′Qh(zk) is so. This also remains true
if all variables zk are eliminated from the NLP formulation by expressing them
as a linear transformation of the variables xk and uk (see e.g. [40]). That the
whole resulting NLP is convex if the inequality constraint describes a convex set
of feasible points is trivial. �

Note that the first condition is satisfied whenever ‖h‖2 is convex, but does not need
to hold if h is itself convex and takes on negative values. The second condition
is even more restrictive. For example, if h is itself a convex function, one can
impose upper bounds on the nonlinear output y, but lower bounds would lead to a
non-convex feasible set. A simple example satisfying the conditions of Lemma 5.1
is a convex, piecewise linear function consisting of two linear pieces that meet at
the origin (see Figure 5.4).

Let us assume that a scalar function h : R → R satisfies both conditions of
Lemma 5.1. Then there is some theoretical justification for trying to approximate
the resulting convex NLP by a convex QP, i.e. sticking to a linear MPC formulation.
If h is a piecewise linear function, such an approximation can be even made exact.
In order to see that, let

h(zk) =





amn ẑk + bmn ẑk ∈ Ẑmn

. . .

a−1ẑk + b−1 ẑk ∈ Ẑ−1

a0ẑk ẑk ∈ Ẑ0

a1ẑk + b1 ẑk ∈ Ẑ1

. . .

amp ẑk + bmp ẑk ∈ Ẑmp

(5.2)

be a piecewise linear function satisfying both conditions of Lemma 5.1 and, without
loss of generality, crossing the origin (with mn and mp being non-negative integers

and the Ẑi form a mutually disjoint partition of the domain of ẑk
def
= zk − zref

k ). In
order to yield an exact representation as a convex QP, we introduce slack variables
εk for the kth interval of the prediction horizon. Moreover, we add the following
linear constraints to our linear optimal control problem (1.11):

1. εj ≥ aiẑj + bi ∀j ∈ {k0, . . . , k0 + np − 1} ∀i ∈ {0, . . . ,mp} , (5.3a)

2. εj ≥ −aiẑj − bi ∀j ∈ {k0, . . . , k0 + np − 1} ∀i ∈ {mn, . . . ,−1} . (5.3b)



INDUSTRIAL CASE STUDY I: EMISSION CONTROL OF INTEGRAL GAS ENGINES 75

Our reformulation is exact, whenever all these inequality constraints hold with
equality on the respective pieces Ẑi. This is ensured by modifying the objective
function to

min
xk0

,...,xk0+np
,

εk0
,...,εk0+np−1,

uk0
,...,uk0+np−1

k0+np−1∑

k=k0

ε′
kQεk + û′

kRûk + x′
k0+np

Pxk0+np , (5.4)

where we require Q ∈ S≻0.

Introducing the constraints (5.3) and the objective function (5.4), we arrive at
a modified MPC formulation where the constrained slack variables implicitly
describe an asymmetric convex quadratic objective function. This asymmetry
captures the nonlinearity of h and is exact if h is a piecewise linear function.
Otherwise, one can try to approximate h by a piecewise linear function. If h is
differentiable, this approximation can be made arbitrarily good by introducing
many linear pieces.

Our main motivation to introduce this modified linear MPC formulation is to
avoid the need to solve a costly NLP problem. However, also our modified linear
formulation increases the computational load of solving the resulting convex QP. In
particular, we introduce an additional optimisation variable εj per time interval
and an additional linear constraint per time interval and per linear piece of h
(both for each output component respectively). When employing qpOASES, the
computational load per QP iteration increases quadratically to cubically with
the number of optimisation variables and linearly in the number of constraints.
Moreover, a larger number of constraints will usually also lead to a larger number
of QP iterations required to solve the problem. Thus, one can summarise that
the main additional computation cost of our modified formulation stems from
introducing np·ny slack variables, while the (mn+mp)·np·ny additional constraints
usually have less impact.

Nevertheless, if h (or its piecewise linear approximation) consists of many linear
pieces, the number of additional constraints can become very large. We propose
two possible remedies for this case: The first one is to use qpOASES’s feature to
handle QP comprising many constraints (see Subsection 4.2.4). The second one is
to introduce slack variables only on the first nsl ≤ np intervals of the prediction
horizon, i.e. one ignores the nonlinear dependence described by h on later intervals.
This heuristic takes h into account only during transient behaviour of the process,
which is supposed to take place at the beginning of the prediction horizon. On
later time intervals, the heuristic relies on an explicit inversion of h when the
system is expected to be close to a steady-state as discussed before.

The proposed modification for MPC formulations comprising a Wiener model
has been applied to the integral gas engine. For doing so, the NOx emissions



76 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

were approximated within the relevant operating range by a suitable piecewise
linear function consisting of two linear pieces (see Figure 5.4). In [2] a prediction
horizon of 300 and a shorter slack horizon of 50 intervals have been used, which
increased computation time only moderately compared to a standard linear MPC
formulation. It was shown that the modified objective function causes the gas
engine to tend running lean and thus could reduce the NOx peaks by up to 50 %
(compared to standard linear MPC).

Figure 5.4: Piecewise linear approximation (solid) of the NOx emission (dashed)
within the relevant operating range as a function of the fuel to air ratio φ (taken
from [2]).

5.2 Industrial Case Study II: MPC Feasibility Man-
agement in the Process Industry

Our second case study explores how to deal with MPC formulations that lead
to infeasible QPs. This is an important question for practical setups and each
MPC software for industrial use needs to be able to handle QP infeasibilities.
In Subsection 5.2.2 we also briefly discuss the need to impose constraints with
different priorities. Our considerations are motivated by a project with IPCOS NV,
Belgium, aiming at coupling qpOASES to their INCA MPC software for advanced
process control. Subsection 5.2.3 concludes this section by presenting a novel
approach to efficiently handle infeasible QPs arising in MPC based on the online
active set strategy.



INDUSTRIAL CASE STUDY II: MPC FEASIBILITY MANAGEMENT IN THE PROCESS INDUSTRY 77

5.2.1 Infeasibility Handling for Linear MPC

The ability to directly incorporate constraints into the control problem formulation
is one of the major advantages of MPC over conventional feedback control
approaches. By incorporating them into the underlying optimisation problem—
a QP in the linear MPC case—the MPC controller makes sure that all these
constraints will be met when applying the optimised control inputs to the process.
However, this becomes impossible whenever the imposed constraints are too
restrictive, i.e. if there do not exist any control inputs that satisfy all of them
simultaneously. In this case, the underlying QP will become infeasible and thus
does not have a solution.

The occurrence of infeasibility can often be avoided by a careful problem
formulation. However, in real-world applications the MPC controller is confronted
with noisy measurements, model-plant mismatch, discretisation errors or other
phenomena that can render the resulting QP infeasible. As MPC usually operates
processes close to their constraints for improving control performance, all industrial
controllers need to implement a dedicated infeasibility handling strategy that deals
with the resulting failure of the QP solver.

During the last two decades, several MPC infeasibility handling strategies have
been proposed that modify the imposed constraints such that the modified
optimisation problem can be solved [56, 208, 130]. All these strategies introduce
slack variables as additional degrees of freedom into the QP to allow for constraint
violation. In order to keep this violation at a minimum, non-zero values of the
slack variables are penalised in the objective function of the QP. Selection and
tuning of these penalisations is crucial for good control performance and at least
two measures of optimality for these constraint relaxations exist: one usually either
wants to minimise the amplitude (measured in a certain norm) or the duration of
the constraint violations.

It has been shown that for certain systems, e.g. non-minimum phase systems,
these are contrary design goals and [208] elaborates on the multi-objective nature
of infeasibility strategies. We skip the so-called minimal time approach minimising
the predicted duration of constraint violations and focus on briefly summarising
strategies that aim at minimising the maximal predicted constraint violation (ℓ∞

strategy) and the (weighted) ℓ1 or ℓ2 norm of the predicted constraint violations,
respectively.

A first class of strategies always relaxes all constraints to become soft constraints
in order to solve a QP that is guaranteed to be feasible. In this case, slack variables



78 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

εk are introduced into problem formulation (1.11) as follows:

min
xk0

,...,xk0+np
,

yk0
,...,yk0+np

,

εk0
,...,εk0+np

,

uk0
,...,uk0+np−1

k0+np−1∑

k=k0

ŷ′
kQŷk + û′

kRûk + ε′
ksk + ε′

kSkεk + x̂′
k0+np

P x̂k0+np

(5.5a)

s. t. xk0 = w0 , (5.5b)

xk+1 = Axk +Buk ∀k ∈ {k0, . . . , k0 + np − 1} , (5.5c)

yk = Cxk +Duk ∀k ∈ {k0, . . . , k0 + np − 1} , (5.5d)

bk ≥Mkyk +Nkuk − εk ∀k ∈ {k0, . . . , k0 + np − 1} , (5.5e)

bk0+np ≥Mk0+npxk0+np − εk0+np , (5.5f)

εk ≥ 0 ∀k ∈ {k0, . . . , k0 + np} , (5.5g)

where the component-wise non-negative vectors sk and the symmetric positive
semi-definite matrices Sk define the penalties on the slack variables εk. Formu-
lation (5.5) can capture ℓ1 and ℓ2 penalty norms (or mixtures of them), where
each slack variable εk comprises one scalar slack variable per output constraint.
In case of the ℓ∞ norm only one slack variable ε for the whole prediction horizon is
introduced also containing one scalar slack per output constraint. Also adaptations
of these ideas to explicit MPC have been proposed [131].

Though practically appealing, these variants require a careful tuning of the
weighting of the slack variables within the objective function. Otherwise control
performance can deteriorate significantly or constraint violations occur though
the original QP is feasible. In particular, exactness of the relaxation can only be
achieved when using the ℓ1 or ℓ∞ norm [87]. We call an infeasibility handling
strategy exact if the constraints of the MPC problem (5.5) remain unrelaxed
whenever it is feasible. In order to facilitate the tuning, the use of time-varying
weights combined with the ℓ∞ norm is investigated in [130].

A second class of the strategies first checks for infeasibility, e.g. by solving a linear
programming problem. In this case, relaxations are introduced only if the current
QP is actually infeasible. These two-step approaches are exact, but require an
additional LP to be solved at every time instant, even when the problem is feasible.
A variant of this concept is to let the QP solver detect infeasibility and to re-run
it with a relaxed problem in such a case. Also here two calls to an optimisation
routine are required.



INDUSTRIAL CASE STUDY II: MPC FEASIBILITY MANAGEMENT IN THE PROCESS INDUSTRY 79

5.2.2 Handling of Prioritised Constraints

The strategies presented so far neglect a special aspect when designing strategies to
handle QP infeasibilities: In a practical setup, it often turns out that satisfaction
of certain constraints has higher priority than satisfaction of others. This is
particularly true for QPs arising in our second case study dealing with MPC for
chemical processes.

The INCA MPC software has been designed to control batch and other chemical
processes and allows the user to set up control problems in a hierarchical
manner [41]. It starts with optimising an MPC formulation containing only
operating specifications with the highest priority. Optimising these specifications
has absolute priority over further specifications with lower priority. Only if the
solution found leaves further degrees of freedom to be optimised, the operating
specification at the next lower priority level are included into the MPC formulation.
A typical example for such a hierarchical formulation in the process industry could
be: first optimise plant safety with higher priority than product quality, then
optimise product quality with higher priority than energy saving or cost reduction.
As both safety requirements as well as minimum standards for product qualities are
typically formulated as constraints within an MPC formulation, we will restrict our
discussion to prioritised constraints (a discussion on multi-objective formulations
can be found in [145]):

min
x∈Rn

1
2x

′Hx+ x′g(w) (5.6a)

s. t. G1x ≥ b1(w) , (5.6b)

G2x ≥ b2(w) , (5.6c)

. . .

GnPL
x ≥ bnPL

(w) , (5.6d)

where nPL ∈ N is the number of priority levels within the constraints. Here, we
assume for notational simplicity that all constraints are expressed as inequality
constraints.

A straight-forward approach to tackle formulation (5.6) is by solving a sequence
of QPs. It starts with solving a QP comprising only the constraints with highest
priority, which are relaxed as described in Subsection 5.2.1, i.e. G1x ≥ b1(w0)− ε1

with ε1 ≥ 0. Preferably a slack penalisation that guarantees exactness is used. Let
εopt

1 be the value of the slack variables at the optimal solution of this first QP. Then
the next QP is solved where G1x ≥ b1(w0)− εopt

1 , εopt
1 fixed, are imposed as hard

constraints and the inequalities of the next lower priority level G2x ≥ b2(w0)− ε2,



80 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

ε2 ≥ 0, are added as soft constraints. This procedure is continued until the
constraints of all priority levels are added.

This approach is easy to implement and guarantees that constraints at a higher
priority level are not violated more than necessary for satisfying constraints at
lower levels. However, a major drawback is the significant computational load as
nPL QPs (augmented with slack variables) need to be solved.

In order to overcome the need to solve up to nPL QPs, Vada et al. [228, 229]
proposed an approach that only requires the solution of one additional LP problem.
The solution of this LP gives optimal relaxations of all constraints of the MPC
formulation such that the resulting QP is feasible and respects the imposed
priorities. However, the presented algorithm for designing the objective weights
of this LP offline relies on a polytopic partition of the MPC state space. Thus, it
does not seem to be practical for MPC problems with higher state dimensions as
typically arising in advanced process control.

qpOASES cannot handle constraint priorities directly. However, when following the
straight-forward approach as described above, solving the sequence of nPL QPs can
be speed-up by using the warm-start capabilities of the online active set strategy
as described in Section 3.2.

5.2.3 Infeasibility Handling using the Online Active Set Strategy

qpOASES can be used as it is to solve a relaxed problem (5.5) for handling
infeasibilities arising in MPC. As these problems typically comprise a large number
of slack variables, the Hessian and constraint matrix of the resulting QP is partly
sparse. Therefore, the features mentioned in Subsection 4.2.5 can be used to speed-
up computation by exploiting this structure. Moreover, the QP sequence to be
solved to tackle formulation (5.6) including prioritised constraints often comprises
more constraints than optimisation variables. Therefore the trick described in
Subsection 4.2.4 to speed-up QP solution can be applied.

Alternatively, we will now present a novel approach based on the online active
set strategy to relax QPs penalising the ℓ1 or ℓ2 norm of the slack variables. It
allows one to implicitly relax QPs without causing any extra computational cost
in cases where the QP is feasible. If the QP turns out to be infeasible while solving
it, a minimal number of slacks is added to yield a feasible relaxed QP which can
be solved very efficiently within the usual homotopy framework. Moreover, by
automatically adapting the weights of the ℓ1 penalty based on the dual solution of



INDUSTRIAL CASE STUDY II: MPC FEASIBILITY MANAGEMENT IN THE PROCESS INDUSTRY 81

the current intermediate QP, this infeasibility handling strategy can be basically
made exact2.

We start our presentation by noting that the soft-constrained MPC problem (5.5)
can be written as parametric QP, too:

min
x, E

1

2
x′Hx+ x′g(w) +

m∑

i=1

1

2
SiiE

2
i +

m∑

i=1

siEi (5.7a)

s. t. G′x ≥ b(w0)− E , (5.7b)

E ≥ 0 , (5.7c)

where we introduce slack variables E ∈ Rm. Moreover, we assume a constant
positive weighting vector s ∈ Rm representing the ℓ1 penalty as well as a time-
constant, diagonal weighting matrix S ∈ Sm with non-negative entries for the ℓ2

penalty. For the moment we regard s and S to be given but we will later use s as
variable parameter.

We propose to start solving QP (2.9) corresponding to an unrelaxed MPC
formulation by means of the online active set strategy. While moving along
the homotopy path towards the solution of the current QP, QP infeasibility
corresponds to reaching the boundary of the convex set of feasible parameters
P (see Definition 2.6). Algorithmically, this is indicated by either of the following
two possibilities:

1. A constraint needs to be added to the active set in step (6) of Algorithm 3.1
which is linearly dependent from the other active ones but no constraint can
be removed to resolving this linear dependence.

2. The limits of active constraints change in such a way that their range
become conflicting. This can be detected by rapidly growing dual multipliers
corresponding to the involved active constraints [240].

In both cases, we propose to only introduce a slack variable for the constraint that
causes the (current) infeasibility. In the first case, this means that we only relax the
constraint to be added to the active set; in the second case, the active constraint
whose dual multiplier tends to infinity is relaxed. This can be interpreted as
switching to the relaxed formulation (5.7) and one can continue to solve this relaxed
QP by further proceeding along the usual homotopy path. While doing so, possibly
more constraints need to be relaxed. Conversely, relaxed constraints might become
feasible in their original form again.

2Thomas Wiese contributed to this research during his Bachelor Thesis project at
K.U. Leuven [240]. He also wrote a prototype implementation of the presented approach within
qpOASES.



82 PRACTICAL ISSUES AND INDUSTRIAL CASE STUDIES

Introducing only one slack variable per QP iteration if necessary can be
implemented efficiently. The reason is that one can show that the KKT optimality
conditions of (5.7) are similar to those of (2.9), with the following analogue to
Equation (3.4) (see appendix of [240]):

(
H +

∑
i∈J

SiiGiG
′
i G′

A\J

GA\J 0

)(
x
−yA\J

)
=

(
−g(w0) +

∑
i∈J

Gi(s+ Siibi(w0))

bA\J

)
, (5.8)

where we define J
def
= {i ∈ k ∈ {1, . . . ,m} | Ei > 0}, i.e. the index set of relaxed

constraints. It is important to note that the slack variables E enter this KKT
system only implicitly and thus do not increase the computational load to
determine the next step direction along the homotopy path. In particular, no
primal step in the slack variables ∆E needs to be computed.

This raises the question of how the online active set strategy can detect whether
an index enters or leaves J. From the analysis of exact penalty functions (see [87]),
it can be seen that Ej > 0 if and only if yj > s for j ∈ A (exact penalty property).
Therefore, we can use the condition yj + τ∆yj ≤ s to detect whether an index
j ∈ A enters J and thus can add it to the step length determination implied by
Equations (3.7). As complementary condition for checking whether an index j
leaves J (and enters A), we use G′

j(x+ τ∆x) = bj(w0) + τ∆bj , i.e. we look for the
closest point where constraint j can be met again without relaxation.

In order to yield an efficient implementation, we need to be able to update the
KKT system (5.8) efficiently whenever the cardinality of J changes. If only an
ℓ1 penalty term is present, i.e. S = 0, only the gradient in the right-hand side
vector changes. This can be perfectly captured within the usual parametric QP
framework of the online active set strategy at no significant additional cost. If (also)
an ℓ2 penalty term is present in formulation (5.7), we need to update the Hessian
matrix. Adding or removing a constraint j to or from J implies that we have to
add or subtract SjjGjG

′
j from the Hessian matrix. This means that also qpOASES’s

Cholesky factors of the projected Hessian matrix need to be updated accordingly.
Fortunately, as both operations describe symmetric rank-1 updates, it is possible
to update the Cholesky decomposition efficiently (requiring O(n2) operations) by
means of rank-1 update and downdates of the Cholesky factors [209]. We repeat
that these additional computations are not necessary as long as the original QP is
feasible, i.e. J = ∅.

The fact that the set of feasible parameters P is convex (cf. Theorem 2.3) ensures
that our infeasibility handling strategy is “semi-exact” in the sense that it uses
non-zero slack variables only if the original QP is infeasible. However, it might
happen that slack variables (falsely) remain non-zero after w0 has entered P again.



INDUSTRIAL CASE STUDY II: MPC FEASIBILITY MANAGEMENT IN THE PROCESS INDUSTRY 83

Referring to [87], this effect can be avoided by choosing the weights of the ℓ1

penalty terms s larger than the largest absolute value of the dual multipliers at
the optimal solution. For small-size problems this value might be pre-computed
as suggested in [145]. However, in most cases this value is not known beforehand
and standard implementations simply choose (very) large weights in order to yield
an exact penalty function. As this might lead to numerical difficulties, we propose
an adaptive choice of s: Once qpOASES detects infeasibility of the current QP, it
chooses all entries of s to be larger than the largest absolute value of the dual
multipliers of the current intermediate QP solution. This value is kept constant
until w0 re-enters P .

Evaluation of the practical benefits of this novel strategy to handle infeasible MPC
problems is still ongoing research. Therefore, we conclude with summarising its
theoretical strengths:

• only one QP needs to be solved at each sampling instant and computational
load is not increased whenever the current QP is feasible;

• slack variables are only introduced implicitly up to an extent actually
required, which significantly reduces the problem dimension compared to the
fully relaxed formulation (5.7) and should thus reduce computation time;

• the adaptive choice of s mimics an exact penalty function while avoiding
numerical difficulties;

• when leaving the set of feasible parameters P , the primal QP solution keeps
on changing continuously as in the standard variant of the online active set
strategy.





Part II

Nonlinear
Model Predictive Control

85





Chapter 6

Overview of Existing Methods
for Nonlinear MPC

This chapter outlines general approaches to solve nonlinear MPC problems. The
focus lies on so-called direct methods that first discretise the problem (1.2)
and then solve the resulting nonlinear programming problem (NLP). For doing
so, tailored methods to solve linearised subproblems and for efficient derivative
computation become crucial to yield a sufficiently accurate approximate solution
in real-time. This general discussion is concluded by reviewing a number of efficient
NMPC schemes that have been proposed during the last two decades for fast real-
time control.

6.1 Tackling the Infinite-Dimensional Optimisation
Problem

Nonlinear MPC requires the repeated solution of optimal control problems of the
form (1.2) to obtain optimised control inputs uopt. This constitutes an infinite-
dimensional optimisation problem over the function space to which u belongs.
In certain situations it can be possible to derive the exact optimal solution
analytically, but in general numerical methods for computing an approximate
solution have to be employed. These methods are usually divided into the following
three classes [27]:

1. indirect methods based on Pontryagin’s minimum principle,

2. Hamilton-Jacobi-Bellman (HJB) approaches,

87



88 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

3. direct methods based on a finite-dimensional control parameterisation.

Methods belonging to either of the first two classes initially treat u as a function
and formulate infinite-dimensional optimality conditions that are discretised
afterwards to numerically find a solution (often summarised in the phrase “first
optimise, then discretise”). In contrast, direct methods first approximate u by a
finite-dimensional parameterisation and then numerically solve the resulting finite-
dimensional NLP problem (“first discretise, then optimise”).

6.1.1 Indirect and Hamilton-Jacobi-Bellman Approaches

Indirect methods compute the optimal control inputs based on Pontryagin’s
minimum principle [192] by introducing the Hamiltonian function1

H(x, u, λ)
def
= ψ (x(t), u(t)) + λ(t)′f

(
x(t), u(t)

)
, (6.1)

with co-states (or adjoint variables) λ : R → Rnx . Then necessary first-order
optimality conditions for solving (1.2) can be obtained in form of the following
boundary value problem [43]:

∂

∂t
xopt(t) = ∇λH(xopt(t), uopt(t), λopt(t)) , (6.2a)

∂

∂t
λopt(t) = −∇xH(xopt(t), uopt(t), λopt(t)) , (6.2b)

xopt(t0) = w0(t0) , (6.2c)

λopt(t0 + tp) = ∇xφ(xopt(t0 + tp)) , (6.2d)

which is also known as Euler-Lagrange differential equation. If optimal state
and co-state trajectories xopt(t) and λopt(t) are found, the optimal control input
trajectory can be obtained by a point-wise minimisation of the Hamiltonian
function:

uopt(ť) = arg min
u(ť)

H
(
xopt(ť), u(ť), λopt(ť)

)
∀ ť ∈ [t0, t0 + T ] . (6.3)

A number of indirect approaches are summarised in [27]. Therein, also the
following practical drawbacks are mentioned: it is non-trivial to formulate the
boundary value problem (6.2) in a numerically stable way; for handling inequality

1For simplicity, we assume that y(t) = x(t) for all t ∈ Tp and leave out the inequality
constraints.



TACKLING THE INFINITE-DIMENSIONAL OPTIMISATION PROBLEM 89

constraints, their switching structure describing when they become active and
inactive has to be guessed before-hand; suitable initial guesses for the optimal state
and co-state trajectories need to be provided to ensure convergence of iterative
solution methods. We will discuss a numerical approach based on Equations (6.2)
in Subsection 6.4.4.

The second class of methods to tackle the infinite-dimensional optimisation
problem (1.2) formulates the so-called Hamilton-Jacobi-Bellman nonlinear partial
differential equation. It is based on the principle of optimality of subarcs, which
can be informally stated as follows [16]: “An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the
first decision2”. Dynamic programming methods aim at solving a discretised HJB
equation [20].

According to [48, 27], solving the HJB equation is usually numerically intractable
for higher state dimensions and analytic solutions are known for special cases only
(e.g. for unconstrained linear MPC problems). Therefore, we will not further
consider them in this thesis.

6.1.2 Direct Methods

Most MPC algorithms are based on direct methods that first transform the
infinite-dimensional optimal control problem into a finite-dimensional NLP (see
Section 6.2 for a formal definition). All direct methods parameterise the control
input trajectory u by a finite number of parameters q ∈ Rnq to yield a suitable
approximation of u:

uappr(t; q) ≈ u(t) ∀ t ∈ Tp . (6.4)

Depending on the treatment of the differential states x, one can distinguish two
main sub-classes of direct methods: sequential and simultaneous approaches, but
also combinations of both exist.

Sequential direct methods make use of the fact that the state trajectory x is uniquely
determined by Equations (1.2b)–(1.2c) for any given parameterised control input

trajectory uappr(t; q) and initial value s0
def
= x(t0). Thus, by performing a single

system simulation using a numerical integrator, an approximate state trajectory
xappr(t; s0, q) can be obtained on Tp. The same holds for the output trajectory
for which an approximation yappr(t; s0, q) can be obtained using Equation (1.2d).

2Where “optimal policy” refers to an optimal control input trajectory and “decision” refers
to any piece of such an optimal trajectory.



90 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

This results in the following finite-dimensional optimisation problem3:

min
s0∈Rnx ,

q∈R
nq

t0+tp∫

t0

ψ
(
yappr(t; s0, q), u

appr(t; q)
)
dt + φ

(
xappr(t0 + tp; s0, q)

)
(6.5a)

0 ≥ c
(
yappr(t; s0, q), u

appr(t; q)
)
∀ t ∈ Tp , (6.5b)

0 ≥ cterm
(
xappr(t0 + tp; s0, q)

)
, (6.5c)

where we eliminated a possible explicit dependence on t or additional parameters
p as described in Section 1.3.

This optimisation problem comprises only a finite number of optimisation variables
but still comprises infinitely many constraints. Thus, constraints are usually only
enforced at the points of a finite grid covering Tp to yield a finite-dimensional
problem. Sequential direct methods, like the described direct single shooting
method, thus solve the optimal control problem (1.2) by first simulating the system
to eliminate the states and outputs and second optimise the resulting discretised
problem (6.5). This idea was already proposed more than 30 years ago in [205].

In contrast, simultaneous direct methods perform these two steps (system
simulation and optimisation) at once. Instead of performing a system simulation
explicitly, the differential equation (1.2c) and the output equation (1.2d) are
discretised in time and are kept within the optimisation problem as equality
constraints. This state discretisation is usually done based on direct collocation or
direct multiple shooting methods.

Collocation methods, as introduced into optimal control in [227] and used for MPC
in [25], divide the prediction horizon Tp into a fine time grid and approximate
both the state and control trajectory on each interval i of this grid by (low-order)
polynomials xpoly(t; si) and upoly(t; qi) with coefficients si and qi. In order to
guarantee that these polynomials result in a continuous approximation of the state
trajectory, a number of equality constraints are imposed on their coefficients. They
ensure that the polynomials satisfy the differential equation at all grid points and
that they fit together continuously. Enforcing the inequality constraints (1.2e)
only on a finite grid like in the sequential approach, direct collocation yields a
finite-dimensional optimisation problem in the variables si and qi. That way, the
system simulation is done implicitly while solving this optimisation problem.

Also multiple shooting methods, as introduced into optimal control by [191, 38],
divide the prediction horizon Tp into a finite grid, which is usually chosen much

3We keep the optimisation variable s0 within the problem formulation though it could easily
be eliminated. This formulation will allow us to describe the real-time iteration algorithm of
Section 7.2 more conveniently.



NONLINEAR PROGRAMMING 91

coarser than the one used for collocation methods. On each multiple shooting
interval [τi, τi+1], 0 ≤ i < np, the system is simulated like in single shooting
starting from artificial initial values si ∈ Rnx based on a local control trajectory
parameterisation uappr

i (t; qi). This yields smooth state trajectories xappr
i (t; si, qi)

and corresponding output trajectories yappr
i (t; si, qi) on each multiple shooting

interval. So-called matching conditions, requiring that each final value of the
simulated state trajectories equals the artificial initial value of the next interval,
guarantee that a continuous state trajectory is obtained. Also here the inequality
constraints (1.2e) are only enforced on a finite grid yielding a finite-dimensional
optimisation problem in the variables si and qi:

min
s0,...,snp

q0,...,qnp−1

np−1∑

i=0

τi+1∫

τi

ψ
(
yappr
i (t; si, qi), u

appr
i (t; qi)

)
dt + φ

(
snp

)
(6.6a)

s. t. s0 = w0 , (6.6b)

si+1 = xappr
i (τi+1; si, qi) ∀ i ∈ {0, . . . , np − 1} , (6.6c)

0 ≥ c
(
yappr
i (τi; si, qi), u

appr
i (τi; qi)

)
∀ i ∈ {0, . . . , np − 1} , (6.6d)

0 ≥ cterm
(
snp

)
. (6.6e)

Also multiple shooting techniques perform the overall system simulation simulta-
neously with the optimisation procedure, but simulation of the single trajectory
pieces is done sequentially as in single shooting. Therefore, multiple shooting is
sometimes rather categorised as a hybrid method and not as a fully simultaneous
one.

The different direct methods have their respective theoretical and numerical
strengths and disadvantages, so it depends on the specific application context
which one is most suited. We will elaborate on this in Section 6.3.3.

6.2 Nonlinear Programming

The ability to efficiently solve nonlinear programming problems (NLPs) is an
algorithmic key ingredient to applying nonlinear MPC at high sampling rates
in real-time. This section formally introduces NLPs and briefly sketches different
Newton-type optimisation algorithms for solving them. A thorough treatment of
this topic can be found in several excellent textbooks [87, 104, 178].



92 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

6.2.1 Definitions and Optimality Conditions

This section introduces algorithms to solve optimisation problems given in the
following form:

Definition 6.1 (nonlinear program): The optimisation problem

NLP : min
X∈Rn

F (X) (6.7a)

s. t. G(X) = 0 , (6.7b)

H(X) ≤ 0 (6.7c)

with an objective function F : Rn → R and constraint functions G : Rn → RnG

and H : Rn → RnH is called a nonlinear program. All functions are assumed to
be twice continuously differentiable. �

We call an NLP (6.7) convex if and only if its defining functions F and H are
convex and G is linear. For analysing its optimal solutions, we introduce the
following:

Definition 6.2 (feasible, regular and optimal points of an NLP): Let an
NLP of the form (6.7) and any point X⋆ ∈ Rn be given. X⋆ is called

• feasible iff it satisfies all constraints, i.e.

G(X⋆) = 0 and H(X⋆) ≤ 0 (6.8)

and infeasible otherwise (the set of all feasible points is denoted by F as in
the case of quadratic programs);

• regular iff it is feasible and the Jacobian matrix of the active constraints at
X⋆, i.e. ∇(G(X⋆)′, HA(X⋆)′), has full row rank, i.e. the LICQ holds at X⋆

(where,

A
def
=
{
i ∈ {1, . . . , nH} | Hi(X

⋆) = 0
}

(6.9)

denotes the index set of all inequality constraints that are active at X⋆);

• a global optimum iff it minimises F among all feasible points, i.e.

F (X⋆) ≤ F (X̌) ∀ X̌ ∈ F ; (6.10)

• a local optimum iff it minimises F among all feasible points in a
neighbourhood of X̌, i.e.

F (X⋆) ≤ F (X̌) ∀ X̌ ∈ F ∩ {X ∈ Rn | ‖X −X⋆‖ < ε} (6.11)

for some ε > 0. �



NONLINEAR PROGRAMMING 93

Not much is known about optimality conditions characterising global optima of
general NLPs and only local optima can be satisfactorily described. An important
exception form convex NLPs, for which it can be shown that every local optimum
is also a global one. We will now state the famous KKT optimality conditions that
can be shown to be necessary for any local minimum [142, 151].

Theorem 6.1 (Karush-Kuhn-Tucker conditions for NLPs): If a regular
point Xopt ∈ Rn is a local optimum of the NLP (6.7), then there exist multiplier
vectors λopt ∈ RnG and µopt ∈ RnH such that the following conditions are satisfied:

∇XL
(
Xopt, λopt, µopt

)
= 0 , (6.12a)

G(Xopt) = 0 , (6.12b)

H(Xopt) ≤ 0 , (6.12c)

µopt ≥ 0 , (6.12d)

Hi(X
opt)µopt

i = 0 ∀ i ∈ {1, . . . , nH} , (6.12e)

where the so-called Lagrange function is defined as

L (X,λ, µ)
def
= F (X) + λ′G(X) + µ′H(X) . (6.13)

�

Sufficient local optimality conditions and a further discussion on regularity can be
found in [178].

Analogous to the QP case, we also introduce the following

Definition 6.3 (parametric nonlinear program): The optimisation problem

NLP(w) : min
X∈Rn

F (X) (6.14a)

s. t. G(X ;w) = 0 , (6.14b)

H(X) ≤ 0 (6.14c)

depending on a varying parameter w ∈ Rnx is called a parametric nonlinear
program. �

6.2.2 Newton-Type Optimisation

Let us ignore the inequality constraints defined by H for a moment. Then a
reasonable approach to search for local minima is to identify points that satisfy



94 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

the KKT optimality conditions (6.12a)–(6.12b). For solving this set of nonlinear
equations, Newton’s method has proven to be well-suited. For arbitrary nonlinear
equations C(W ) = 0, it works as follows: Starting from an initial guess W (0), it
generates a sequence of iterates W (k) that each solve a linearisation of the equations
at the previous iterate. This means that for any given iterate W (k), k ≥ 0, the
next iterate W (k+1) is required to satisfy

C(W (k)) +∇C(W (k))′
(
W (k+1) −W (k)

)
= 0 , (6.15)

which can be equivalently formulated as

∇C(W (k))′∆W (k) = −C(W (k)) , W (k+1) = W (k) + ∆W (k) . (6.16)

The hope is that the linearisations are sufficiently good approximations of the
original nonlinear system and that the iterates converge towards a solution W opt.
Globalisation strategies aim at ensuring convergence to local optima from arbitrary
initial guesses by taking so-called damped Newton steps W (k+1) = W (k)+α(k)∆W (k)

with suitable α(k) ∈ (0, 1]. An excellent overview of Newton’s methods including
convergence analysis, algorithmic variants and solution methods is given in [60].

If Newton’s method is started sufficiently close to a solution, it converges at
quadratic rate towards this solution. In order to speed-up computation, the
Jacobian ∇C(W (k))′ might not be computed or inverted exactly. This yields
cheaper iterations but leads to slower convergence rates. These variants are known
as Newton-type methods.

Most MPC formulations comprise inequality constraints leading to NLP problems
that involve inequalities H(X) ≤ 0. Thus, we are interested in extensions to
Newton-type optimisation methods that can also deal with the KKT optimality
conditions (6.12c)–(6.12e). Depending on how these additional conditions are
treated, one can distinguish two main classes of Newton-type optimisation
methods: sequential quadratic programming (SQP) methods and interior-point
(IP) methods. We will discuss them in the following subsections, which follow the
presentation given in [65].

6.2.3 Sequential Quadratic Programming

A first Newton-type variant to iteratively solve the KKT system (6.12) is to
linearise all nonlinear functions (i.e. also the ones corresponding to the NLP
inequalities) at each iteration k. It can be shown that the resulting linear
complementarity system can be interpreted as the KKT conditions of the following



NONLINEAR PROGRAMMING 95

quadratic program:

min
X∈Rn

1

2
(X −X(k))′∇2

XL(X(k), λ(k), µ(k))(X −X(k)) +∇F (X(k))′X (6.17a)

s. t. G(X(k)) +∇G(X(k))′(X −X(k)) = 0 , (6.17b)

H(X(k)) +∇H(X(k))′(X −X(k)) ≤ 0 , (6.17c)

where X(k) denotes the kth primal solution iterate. In case the Hessian matrix
∇2
XL(X(k), λ(k), µ(k)) is positive semi-definite, this QP is convex and global

solutions can be found reliably. Thus, most of the QP solvers mentioned in

Section 2.3 can be used to obtain the current step direction ∆X(k) def
= Xopt

QP−X
(k).

Moreover, the multipliers are set to the optimal QP multipliers: λ(k+1) def
= λopt

QP,

µ(k+1) def
= µopt

QP. This general approach to address the NLP problem (6.7) is called
sequential quadratic programming (SQP) and goes back to [245].

Apart from this exact Hessian SQP method presented above, several other SQP
variants exist that make use of inexact Hessian or Jacobian matrices. One of the
most successfully used SQP variants has been proposed in [194]. It replaces the
Hessian matrix ∇2

XL(X(k), λ(k), µ(k)) by a symmetric approximation A(k). Each
new Hessian approximation A(k+1) is obtained from the previous one by an update
formula that uses the difference of the Lagrange gradients

∆L(k) def
= ∇XL(X(k+1), λ(k+1), µ(k+1))−∇XL(Xk, λ(k+1), µ(k+1)) (6.18)

and the step ∆X(k). The aim of these variable metric or quasi-Newton methods
is to collect second order information in A(k+1) by satisfying the secant equation
A(k+1)∆X(k) = ∆L(k). The most widely used update formula is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update [42, 86, 107, 214]

A(k+1) def
= Ak +

∆L(k)
(
∆L(k)

)
′

(
∆L(k)

)
′∆X(k)

−

(
A(k)∆X(k)

) (
A(k)∆X(k)

)
′

(
∆X(k)

)
′A(k)∆X(k)

. (6.19)

When starting with a symmetric, positive definite approximation A(0), it ensures
that the approximations remain symmetric and positive definite as long as(
∆L(k)

)
′∆X(k) > 0 holds. Quasi-Newton methods can be shown to converge

superlinearly to a local optimum under mild conditions [178], and had a
tremendous impact in the field of nonlinear optimisation.

The constrained (or generalised) Gauss-Newton method is another particularly
successful SQP variant, which is also based on approximations of the Hessian
matrix. It is applicable when the objective function is a sum of squares:

F (X) =
1

2
‖V (X)‖2

2 (6.20)



96 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

as in this case it is reasonable to approximate the Hessian matrix by

A(k) def
= ∇V (X(k))∇V (X(k))′. (6.21)

The corresponding QP objective is easily seen to be

1

2

∥∥∥V (X(k)) +∇V (X(k))′(X −X(k))
∥∥∥

2

2
. (6.22)

The constrained Gauss-Newton method has been developed in [33, 34] and
converges linearly towards the solution, which means that the contraction rate of
the error between two successive iterates is asymptotically bounded by a positive
constant smaller than one. Though this is worse than the superlinear rate of Quasi-
Newton methods, the error contracts at a high rate whenever the residual norm
‖V (Xopt)‖ or the second derivatives of the problem-defining functions V, G, H are
small [33].

All SQP variants mentioned so far are based on exact first-order derivatives
∇G(X(k)) and ∇H(X(k)) of the constraint functions. But also variants that
approximate these Jacobian matrices have been proposed [118, 35]. This can
be advantageous if evaluating G or H is computationally expensive; for example
in shooting methods for solving optimal control problems, where evaluating G
requires the integration of a dynamic system.

SQP methods have been implemented for general NLPs in the proprietary
FORTRAN packages NPSOL [96] and SNOPT [100]. The proprietary C/C++ package
MUSCOD-II [157, 68] implements several SQP variants tailored to optimal control
problems.

6.2.4 Interior-Point Methods

An alternative Newton-type variant to address the solution of the KKT sys-
tem (6.12) is to replace the last nonsmooth equality (6.12e) by a smooth nonlinear
approximation:

∇XL(Xopt, λopt, µopt) = 0 , (6.23a)

G(Xopt) = 0 , (6.23b)

Hi(X
opt) µopt

i = κ ∀ i ∈ {1, . . . , nH} , (6.23c)

with a suitable κ > 0. This system is then solved with Newton’s method and
satisfaction of the two remaining KKT inequality conditions is ensured by choosing



NUMERICAL OPTIMAL CONTROL 97

suitable step lengths α(k). Analogue to the QP case (see Subsection 2.3.2), the
obtained solution is not a solution to the original problem, but to the problem

min
X∈Rn

F (X)− κ
nH∑

i=1

log (−Hi(X)) (6.24a)

s. t. G(X) = 0 . (6.24b)

Thus, the solution lies in the interior of the set described by the inequality
constraints and approaches the true solution as κ is reduced. The crucial feature
of these interior-point methods is the fact that, once a solution for a given κ is
found, the parameter κ can be reduced by a constant factor without jeopardising
convergence of Newton’s method. After only a limited number of Newton iterations
a reasonably accurate solution of the original NLP is obtained. We refer to the
excellent textbooks [250, 40] for further details.

It is interesting to note that the linearisation of the smoothed KKT system (6.23)—
after elimination of the variable µ(k+1)—constitutes a linear system that is
equivalent to the KKT conditions of an equality constrained QP. Thus, most
structure exploiting features of SQP methods also have an equivalent in IP
methods.

A widely used implementation of nonlinear IP methods is the open-source code
Ipopt [235, 236] originally written in FORTRAN and later ported to C/C++.
Further implementations are the proprietary package KNITRO [45], the C packages
LOQO [234] and the FORTRAN package GALAHAD [111].

6.3 Numerical Optimal Control

In order to yield efficient implementations of optimal control algorithms, Newton-
type optimisation methods need to take advantage of the special structure of
optimal control problems (1.1). In all Newton-type optimisation routines there
are two crucial and often costly computational steps, namely the solution of
linearised subproblems and the computation of derivatives. Depending on which
direct method is employed to transform the optimal control problem into an NLP,
different approaches to exploit their specific structure exist. This is particularly
important for simultaneous direct methods as they result in larger-scale NLPs
in the variables si and qi (see Subsection 6.1.2). Our presentation will mainly
consider multiple shooting discretisations, while we refer to [23, 24] for a detailed
description of NLPs resulting from using collocation.



98 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

6.3.1 Solving Linearised Subproblems

Let us consider a multiple shooting discretisation of the optimal control prob-
lem (1.2). This leads to a parametric nonlinear program NLP(w) of the form (6.6)
that depends linearly on the initial value w = w0. By introducing artificial initial
values si and the choice of a control parameterisation qi with local support as
suggested in [38], one obtains a discretised objective function that on each multiple
shooting interval j depends on the local variables sj and qj only. Therefore, its
Hessian is a block-diagonal matrix. Very similar observations apply to problem
discretisations based on collocation as it also uses local variables si and qi to
parameterise the state and control input trajectory.

At each iteration of a Newton-type method, a linearisation of problem (6.6) needs
to be solved. As discussed in Section 6.2, this subproblem can be interpreted as a
QP no matter whether an SQP or an IP method is used. It turns out that due to
the dynamic system structure the Hessian of the Lagrange function has the same
separable structure as the Hessian of the original objective function. Therefore,
the QP objective can still be written as a sum of linear-quadratic stage costs. We
write down the QP subproblem for an SQP method, where the iteration index k
is left out for notational simplicity:

min
s, q

np−1∑

i=0

ψQP
i (si, qi) + φQP

(
snp

)
(6.25a)

s. t. s0 = w0 , (6.25b)

si+1 = Fi + Fsi
si + Fqi

qi ∀ i ∈ {1, . . . , np} , (6.25c)

0 ≥ Ci + Csi
si + Cqi

qi ∀ i ∈ {1, . . . , np} , (6.25d)

with suitable vectors Fi, Ci and Jacobians Fsi
, Fqi

, Csi
, Cqi

(see the description
in Subsection 7.2.1 for more details). The summands of the objective each are
linear-quadratic.

The fact that the Hessian matrix of the discretised optimal control problem is block-
diagonal does not only allow one to write down the QP objective in a separable
form and to exploit this sparsity in the linear algebra. When quasi-Newton Hessian
updates are used, it also allows one to perform partitioned variable metric or high
rank updates by updating all Hessian blocks separately [117, 38].

The above linearised QP subproblem (6.25) is basically a discrete-time linear
optimal control problem (1.4), which in turn can be interpreted as a parametric
quadratic program QP(w0). Thus, for solving it efficiently, the considerations of



NUMERICAL OPTIMAL CONTROL 99

Subsection 2.1.4 apply. Following the discussion in [65], we briefly recall the two
main solution variants and relate them to approaches proposed in the literature.

The first one is state-elimination or condensing and is based on the fact that
all state variables si, 1 ≤ i ≤ np, can be uniquely expressed by s0 and the
optimisation variables qi corresponding to the control inputs. Thus, the states can
be eliminated from the linearised problem resulting in a smaller, but dense QP [38].
It is interesting to note that a multiple shooting discretisation used in combination
with condensing leads to QP subproblems of exactly the same dimension as a single
shooting discretisation4. The cost of solving these subproblems with a dense QP
solver grows with O(n3

pn
3
u), i.e. cubically with the horizon length np. This becomes

inefficient whenever np is large, but allows one to employ general-purpose QP
solvers or the online QP solver qpOASES described in Chapter 4.

Instead of condensing the linearised problem, one can opt to keep the con-
straints (6.25b) and (6.25c) and the variables si as unknowns in the QP. The
corresponding KKT optimality conditions (2.8) can be shown to have almost block
diagonal structure, allowing to factorise this linear system very efficiently. For
doing so, the use of a discrete-time Riccati recursion has been proposed both within
an active-set [106] and within an interior-point framework [220, 196]. The cost of
this factorisation is O(np(nx + nu)3), i.e. it grows only linearly with the horizon
length np. Alternatively, the same complexity can also be achieved by using a
direct sparse solver, as done in the general-purpose NLP solver Ipopt [235, 236].

6.3.2 Derivative Computation

Looking at the QP subproblem (6.17), we see that at least first-order derivatives
of the functions F , G and H need to be computed at each SQP iteration. The
same also holds for interior-point methods, where a similar equality constrained
QP needs to be solved at each iteration. If an exact Hessian scheme is used
(which is particularly common for IP methods), even second-order derivatives are
needed. As function evaluations always form the basis of computing corresponding
derivatives, computational effort for generating derivatives is proportional with the
effort of a single function evaluation. While evaluating the objective function F
or the path constraints H is usually relatively cheap, evaluation of the dynamic
equations gathered in G is typically more expensive. This is especially true for
shooting methods, where evaluating G requires a system simulation.

Several standard techniques for computing derivatives exist. A first group of
methods calculates derivatives analytically, which might either be done manually

4However, when controlling systems with unstable or highly nonlinear dynamics, the numerical
conditioning of condensed QPs arising from a multiple shooting discretisation is usually better
than those of QPs arising in single shooting.



100 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

or automated using a symbolic representation of the function. A related
approach is automatic differentiation [114, 115] which generates source code
for computing the derivative by transforming the source code of the respective
function. Alternatively, this can also be achieved by making use of operator
overloading. It comes in two main variants, the so-called forward and backward
mode, respectively, but also combinations of both exist. The forward mode is
more efficient if the function maps into a space whose dimension is higher than its
domain (as it is typically the case for H), while the backward or reverse mode is
more efficient in the opposite case (as it is the case for the scalar-valued function F ).
Both variants enjoy the common feature that evaluating the derivative of a function
becomes at most five times more expensive than a single function evaluation. A
popular open-source implementation working with C/C++ code is ADOL-C [116],
which uses operator overloading.

The second group of methods approximates derivatives by numerical schemes like
the straight-forward finite-differences approach. It requires one function evaluation
for each directional derivative and the approximated derivative is computed with
much less accuracy than the function itself. To overcome the latter disadvantage,
internal numerical differentiation has been proposed to generate sensitivities of
dynamic equations (i.e. derivatives of the function G) [34]. It basically derives the
numerical integration scheme itself such that sensitivities are obtained with the
same accuracy as the solution of the differential equation.

In the context of multiple shooting discretisations, reduction techniques to
compute derivatives more efficiently have been proposed based on the following
observation: if the linearised subproblems are solved employing state-elimination,
computation of the full derivatives Fsi

and Fqi
in Equation (6.25c) is not necessary

as only the quantities of the resulting condensed QP are required. This can save a
significant amount of computation if the number of states is large compared to the
number of controls [207]. A related idea for optimal control problems comprising
differential-algebraic equations (DAEs) has been presented in [157].

6.3.3 Comparison of Newton-Type Optimal Control Methods

Our discussion of direct optimal control methods can be summarised by
categorising these methods into different classes that depend on the way the main
algorithmic steps are performed [65]:

1. problem discretisation: sequential or simultaneous;

2. treatment of inequalities: SQP or nonlinear IP method;

3. derivative computation: full or reduced;



NUMERICAL OPTIMAL CONTROL 101

4. linear algebra of linearised subproblems: state-elimination or direct sparsity
exploitation.

Sequential methods have the advantage that each NLP iteration is based on
a continuous state trajectory; in contrast, the equality constraints on the
coefficients si and qi imposed by simultaneous methods are usually only satisfied
at the solution and the corresponding state trajectories thus have no direct
physical interpretation at intermediate iterates. On the other hand, simultaneous
approaches allow one to specify initial guesses not only for the optimal control
input trajectory (which are usually difficult to obtain) but also for the optimal
state trajectory (for which often good estimates exist). Simultaneous methods
are also much better suited to optimise highly nonlinear or unstable systems as,
roughly speaking, the nonlinearity is equally distributed over the nodes. Moreover,
they often show faster local convergence of the Newton iterations.

Shooting methods can employ state-of-the-art integrators with an adaptive choice
of the step-size for simulating the system (e.g. DAESOL-II [3] or the SUNDIALS

suite [126]), while collocation methods correspond to implicit Runge-Kutta
methods. As sequential methods directly lead to smaller-sized NLPs, they can
be easily combined with general-purpose NLP/QP solvers. This is contrast to
simultaneous approaches, which lead to larger NLPs whose particular structure
needs to be exploited in order to solve them efficiently. However, simultaneous
approaches also offer better possibilities to parallelise computations on multi-
core processors: while collocation methods allow for parallelisation of the sparse
linear algebra within the NLP solver, integration of the state trajectory and
corresponding derivative computation can be performed independently on each
interval, and thus in parallel, when employing a multiple shooting discretisation.

Single shooting methods can be used in combination with both SQP methods
(see [205, 224]) and nonlinear IP methods. The same holds true for multiple
shooting methods, however, they are typically used together with SQP methods,
where the underlying QP subproblems might be solved using an active-set or an
interior-point QP solver. As historically most active-set QP solvers were dense,
active-set SQP methods were used in combination with state elimination [38, 207],
while SQP methods using interior-point QP solvers were proposed to exploit the
sparsity of the linearised subproblems directly [220]. Collocation methods were
initially also used in combination with active-set SQP methods [227, 25, 22].
However, the fact that they lead to very large and sparse KKT systems makes them
most suited for IP methods based on a sparse linear algebra (like the approach
proposed in [235] based on Ipopt).



102 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

6.4 Algorithms Tailored to Nonlinear MPC

So far all described methods were designed for (offline) optimal control. This
section discusses suitable modifications to tailor these methods to nonlinear MPC
and surveys a number of NMPC algorithms proposed in the literature (closely
following the presentation given in [65]).

6.4.1 Online Initialisations

NMPC requires the solution of a sequence of “neighbouring” nonlinear programs
NLP(w0) that only differ in the initial state w0. For exploiting this fact, one
can initialise subsequent problems based on previous solution information. A first
and obvious way is based on the principle of optimality of subarcs as mentioned
in Subsection 6.1.1: Let us assume that we have computed an optimal solution(
sopt

0 , qopt
0 , sopt

1 , qopt
1 , . . . , sopt

np

)
of the NMPC problem (6.25) starting with initial

value w0. If we consider a shortened NMPC problem without the first interval

starting with the initial value wnew
0

def
= sopt

1 , then for this shortened problem the
vector

(
sopt

1 , qopt
1 , . . . , sopt

np

)
is the optimal solution. Based on the expectation that

the measured initial value wnew
0 for the shortened NMPC problem does not differ

much from sopt
1 , this shrinking horizon initialisation is canonical and it is used in

MPC of batch or finite time processes (see e.g. [123, 63]).

However, in the case of moving (finite) horizon problems, the principle of optimality
is not strictly applicable and we have to think about how to initialise the appended

new variables qnp , snp+1. Often, they are obtained by setting qnp

def
= qnp−1 or

setting qnp to the steady-state control. The state snp+1 is then obtained by forward
simulation. This transformation of the variables from one problem to the next
is called shift initialisation. It is often used in practice (see e.g. [160, 26, 173,
69]), though the shifted solution is not optimal for the new, undisturbed problem.
However, in the case of long horizon lengths np we can expect the shifted solution
to be a good initial guess for the new solution. Moreover, for most NMPC schemes
with stability guarantee (for an overview see e.g. [171]) there exists a canonical
choice of unp that implies at least feasibility of the shifted solution for the new,
undisturbed problem.

A comparison of shifted and non-shifted initialisations was performed in [36] with
the result that for autonomous NMPC problems that regulate a system to steady-
state, there is usually no advantage of a shift initialisation compared to the simple
warm-start initialisation that leaves the variables at the previous solution. In the
case of short horizon lengths it turns out to be even advantageous not to shift the
previous solution, as subsequent solutions are less dominated by the initial values
than by the terminal conditions. On the other hand, shift initialisation is a crucial



ALGORITHMS TAILORED TO NONLINEAR MPC 103

prerequisite in periodic tracking applications [69] and whenever the system or cost
function are not autonomous.

6.4.2 Parametric Sensitivities and Tangential Predictors

In the shift initialisation discussed above we did assume that the new initial value
equals the model prediction. This is of course never the case, as exactly the
presence of unknown disturbances is the main motivation to use feedback control
strategies like MPC. Thus, unpredictable changes in the initial value w0 are the
most important change from one parametric optimisation problem NLP(w0) to
the next one.

It is possible to use the concept of parametric NLP sensitivities to construct a new
initial guess. To illustrate the idea, let us first consider the parameterised root
finding problem C(W ;w) = 0. In the NMPC context, this problem depends on
the uncertain initial value w = w0 and we denote its solution manifold by W opt(w).
It is a well-known fact from parametric optimisation that the solution manifold
is smooth (if bifurcations are excluded). Moreover, if the root finding problem is
extended by inequality constraints to cover the (parameterised) KKT optimality
conditions (6.12), non-differentiable points occur whenever the optimal active-set
changes [119].

As IP methods solve the approximate (parameterised) KKT equality condi-
tions (6.23), the corresponding solution manifold W opt(w) is smooth. Thus, if a
solution W opt(w0) for a previous initial value w0 has been found, a good solution
predictor for a new initial value wnew

0 is provided by

Ŵ opt(wnew
0 )

def
= W opt(w0)−

dW opt

dw0
(w0) , (6.26)

where

dW opt

dw0

(w0) =
(

∂C

∂W
(W opt(w0); w0)

)−1 ∂C

∂w0

(W opt(w0); w0) (wnew
0 − w0) (6.27)

is given by the implicit function theorem. Moreover, an important practical
observation is that an approximate tangential predictor can also be obtained when
it is computed at a point W ∗ that does not exactly lie on the solution manifold.
This more general predictor is given by the formula

Ŵ opt(wnew
0 )

def
= W

∗ −
(

∂C

∂W
(W ∗; w0)

)−1[ ∂C

∂w0

(W ∗; w0) (wnew
0 − w0) + C(W ∗; w0)

]
.

(6.28)

This fact, that is illustrated in Figure 6.1(a), leads to a combination of a
predictor and corrector step in one linear system. If C(W ∗;w0) = 0 holds, the



104 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

formula simplifies to the tangential predictor of the implicit function theorem.
Unfortunately, the IP solution manifold is strongly nonlinear at points where the
optimal active-set changes. Therefore, the tangential predictor is not a good
approximation when we linearise at such points, as visualised in Figure 6.1(b).
One remedy would be to increase the path parameter κ, which decreases the
nonlinearity, but comes at the expense of generally less accurate IP solutions.
This is illustrated in Figure 6.2 for the same two linearisation points as before. In
Figure 6.2(b) we see that the tangent is approximating the IP solution manifold
well in a larger area around the linearisation point, but that the IP solution itself
is more distant to the true NLP solution.

SQP methods directly tackle the exact (parameterised) KKT optimality conditions.
Thus, at points with weakly active constraints, we have to consider directional
derivatives of the solution manifold, or generalised tangential predictors. These
can be computed by suitable QPs [119] and are visualised in Figure 6.3(b). The
theoretical results can be made a practical algorithm by the following procedure
proposed in [62]: first, we have to make sure that the parameter w0 enters the NLP
linearly, which is automatically the case for simultaneous discretisations of the
optimal control problem (see Equation (6.25b)). Second, we address the problem
with an exact Hessian SQP method. Third, we just take our current solution guess
W ∗(w0), and then solve the condensed QP subproblem for the new parameter value
wnew

0 , but initialised at W ∗(w0). It can be shown that this initial value embedding
procedure delivers exactly the generalised tangential predictor when started at a
solution W opt(w0) [62], as in Figure 6.3(b). The predictor becomes approximately
tangential whenever we do not start on the solution manifold (see Figure 6.3(a))
or we do not use an exact Hessian or Jacobian matrix or we do not evaluate the
Lagrange gradient or constraint residuals exactly.

6.4.3 Ideas to Reduce the Feedback Delay

When using NMPC, each solution to a new optimal control problem should ideally
be available instantly, which is impossible due to computational delays. Closely
following the presentation in [65], we summarise several ideas that have been
proposed to reduce this feedback delay:

• Offline pre-computations: As consecutive NMPC problems are similar, some
computations might be done once and for all before the controller starts.
In the extreme case, this leads to an explicit pre-computation of the
NMPC control law (extending the explicit MPC approaches discussed in
Section 2.2), or a solution of the Hamilton-Jacobi-Bellman equation. Both
approaches are usually prohibitive for higher state dimensions, say above
6–8 [174, 48]. But also when online optimisation is used, it is sometimes



ALGORITHMS TAILORED TO NONLINEAR MPC 105

possible to pre-compute and factorise Hessians or even Jacobians in Newton-
type optimisation methods, in particular in the case of neighbouring feedback
control along reference trajectories [150, 44].

• Delay compensation by prediction: When it is known how long solving an
NMPC problem will take, it is a good idea not to address a problem starting
at the current state but to simulate at which state the system will be when
the problem will have been solved. This can be done using the NMPC
system model and the open-loop control inputs that are also applied in the
meantime [85]. This feature is used in many practical NMPC schemes with
non-negligible computation time. Alternatively, computational delays might
be interpreted as actuator delays and modelled within the dynamic system
of the optimiser.

• Division into preparation and feedback phase: Another trick used in several
NMPC algorithms is to divide the computations in each sampling time into
a preparation phase and a feedback phase following [64]. The more CPU
intensive preparation phase is performed with an old predicted state w0

before the new state estimate wnew
0 is available, while the feedback phase

then delivers quickly an approximate solution to the optimisation problem
corresponding to wnew

0 . This approximation is often based on a tangential
predictor as discussed in Subsection 6.4.2.

• Iterating while the problem changes: An important ingredient of some NMPC
algorithms is the idea to solve the NLP problem while it changes. Instead of
performing Newton-type iterations till convergence for an NMPC problem
getting older and older during the iterations, the most current information
is used in each new iteration. This idea is used in [160, 64, 180].

6.4.4 Sequential Approaches

One of the first true online algorithms for NMPC has been proposed about two
decades ago in [159]. This Newton-Type Controller is based on a sequential
direct method and uses an SQP-type procedure with Gauss-Newton Hessian
approximation and a line search globalisation. It uses a shift initialisation and
performs only one SQP iteration at each sampling instant. The result of each
SQP iterate is used to give an approximately optimal feedback to the real process.
Closed-loop stability was proven for open-loop stable processes [160].



106 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

W opt

w0
(a) Linearising at approximate solution.

W opt

w0
(b) Linearising at active-set change.

Figure 6.1: Qualitative illustration of tangential predictors (dashed) for interior-
point methods using a small κ (based on [65]). The IP solution manifold (thick
line) approximates the exact solution manifold (thin line) very well.

W opt

w0
(a) Linearising at approximate solution.

W opt

w0
(b) Linearising at active-set change.

Figure 6.2: Qualitative illustration of tangential predictors (dashed) for interior-
point methods using a larger κ (based on [65]). The IP solution manifold (thick
line) approximates the exact solution manifold (thin line) less accurate.

W opt

w0
(a) Linearising at approximate solution.

W opt

w0
(b) Linearising at active-set change.

Figure 6.3: Qualitative illustration of generalised tangential predictors (dashed)
for exact Hessian SQP methods (based on [65]). By treating the KKT optimality
conditions exactly, the optimal solution manifold (thick line) is recovered.



ALGORITHMS TAILORED TO NONLINEAR MPC 107

Similar to the Newton-Type Controller, the Continuation/GMRES method as
proposed in [180, 210] performs only one Newton-type iteration at each sampling
instant and is based on a sequential formulation. However, instead of solving
linearised subproblems as discussed in Subsection 6.3.1, it iterates on a finite
difference approximation of the Euler-Lagrange differential equation (6.2). Thus,
it might also be classified as an indirect optimal control method, but it works
with a piecewise constant control parameterisation. In order to treat inequality
constraints it uses the following IP-like formulation for a fixed κ:

min
X∈Rn, Y ∈RnH

F (X)− κ
nH∑

i=1

Yi (6.29a)

s. t. G(X) = 0 , (6.29b)

Hi(X) + Y 2
i = 0 ∀ i ∈ {1, . . . , nH} . (6.29c)

The Continuation/GMRES method uses an exact Hessian matrix and an iterative
GMRES method [144] for solving only one linear system at each sampling instant.
As noted in [180], this can be interpreted as performing a Newton-type iteration
with a tangential predictor (6.28) (without shifting). This single combined
predictor-corrector step at each sampling instant seems to be sufficient to follow
the nonlinear IP solution manifold well, as illustrated in Figure 6.4. A variant of
the method using a simultaneous approach and condensing is proposed in [215],
which shows improved accuracy and lower computational cost in each Newton-type
iteration.

1

2

3
W opt

w0

Figure 6.4: Subsequent solution approximations of the continuation/GMRES
method (based on [65]); formatting as in Figure 6.2.



108 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

An interesting cross-over method combining typical features of sequential and
simultaneous methods has been proposed in [224]. It is based on a simultaneous
formulation within an SQP-type framework, but perturbs each SQP iterate in
order to make the state trajectory continuous. This is done by a certain open-loop
or closed-loop forward simulation of the dynamic system given the new iterate
of the control inputs. In the open-loop variant, this nearly results in a sequential
approach, but it allows one to exploit the same sparsity structure as a simultaneous
approach as discussed in Subsection 6.3.1.

6.4.5 Simultaneous Approaches

Like the Newton-Type Controller, the Real-Time Iteration (RTI) scheme presented
in [62, 64] performs one SQP-type iteration with Gauss-Newton Hessian per
sampling instant. However, it employs a simultaneous NLP parameterisation using
direct multiple shooting with full derivatives and state-elimination. Moreover, it
uses the generalised tangential predictor resulting from an initial value embedding
as discussed in Subsection 6.4.2 to correct for the mismatch between the expected
and the actual state. In contrast to the Continuation/GMRES method, where
the predictor is based on one linear system solve, the Real-Time Iteration scheme
solves an inequality constrained QP. Thus, the tangential predictor even works
across changes of the optimal active-set (see Figure 6.5). Thus, roughly spoken,
the RTI scheme works well when the optimal active-set changes faster than
the matrices of the linearised system. The computations of each iteration are
divided into a long preparation phase, in which the system linearisation and state-
elimination are performed, and a much shorter feedback phase that solves just one
condensed QP. Depending on the application, the feedback phase can be several
orders of magnitude shorter than the feedback phase. Note that only one system
linearisation and one QP solution are performed in each sampling time. The QP
corresponds to a linear MPC feedback along a time-varying trajectory and the
RTI scheme gives the same feedback as linear MPC in the limiting case of a linear
system model. Error bounds and closed-loop stability of the RTI scheme have been
established for shrinking horizon problems in [63] and for NMPC with shifted and
non-shifted initialisations in [67] and [66], respectively.

Multi-level RTI schemes have been proposed in [35, 147] to further reduce the
computations performed in each sampling time. For doing so, the multiple shooting
based SQP-type iterations are divided into hierarchical levels: At the lowest
level A, only one condensed QP is solved for the most current initial value w0.
This provides a form of linear MPC at the base level, taking at least active-
set changes into account at a very high sampling frequency. On the next two
intermediate levels, only the nonlinear constraint residuals are evaluated (level B)
for improving feasibility similar to [44], and the Lagrange gradient is evaluated
(level C) for improving optimality based on an adjoint-based inexact SQP method.



ALGORITHMS TAILORED TO NONLINEAR MPC 109

At all these three levels A–C, no new QP matrices are computed and even system
factorisations can be reused again and again. This also makes is possible to hot-
start QP solution based on the online active set strategy [247]. Note that Level C
iterations are still considerably cheaper than one full SQP iteration [246]; but also
for them optimality and NMPC closed-loop stability can be guaranteed by the
results in [66] as long as the system matrices are accurate enough to guarantee
contraction of the Newton-type iterations. Only if this is not the case anymore, an
iteration on the highest level D has to be performed, which includes a full system
linearisation and is as costly as a usual Newton-type iteration.

In order to avoid the convergence issues of predictor-corrector path-following
interior-point methods, the Advanced Step Controller makes a more conservative
choice [255, 254]: in each sampling time, a complete IP procedure is iterated to
convergence (with κ→ 0). In this respect, it behaves like an offline optimal control
algorithm using a simultaneous method (with exact Hessians, full derivatives and
sparse linear algebra). However, two features qualify it as an online algorithm:
first, it takes computational delay into account by solving an “advanced” problem
with the expected initial value ŵ0

new in a preparation phase (similar to real-time
iterations with shift). Second, during the feedback phase, it applies the obtained
solution not directly, but computes first a tangential predictor which corrects
for the differences between the expected state ŵ0

new and the actual state wnew
0 ,

as described in Equation (6.26). We illustrate the behaviour of the Advanced
Step Controller in Figure 6.6, where the tiny arrows indicate that several Newton
iterations are performed during the preparation phase. The very short feedback
phase computes the tangential predictor by only one linear system solve based
on the factorisation of the last Newton iteration’s KKT matrix. As the IP
predictor does not predict optimal active-set changes accurately, one can say that
the Advanced Step Controller gives priority to the nonlinearities of the system

1

2

3W opt

w0

Figure 6.5: Subsequent solution approximations of the real-time iteration scheme
(based on [65]); formatting as in Figure 6.3.



110 OVERVIEW OF EXISTING METHODS FOR NONLINEAR MPC

over the ones introduced by changes in the optimal active-set. As it solves each
problem exactly, classical NMPC stability theory [171] can be extended to this
scheme [254].

1

2

3W opt

w0

Figure 6.6: Subsequent solution approximations of the advanced step controller
(based on [65]); formatting as in Figure 6.1.



Chapter 7

ACADO Toolkit

This chapter describes the open-source package ACADO Toolkit, a new software
environment and algorithm collection for automatic control and dynamic optimi-
sation [127, 128]. It provides a general framework for using a number of algorithms
for direct optimal control and is implemented as self-contained C++ code. One
distinguishing feature is its ability to handle symbolic expressions, which not only
provides interesting algorithmic possibilities but also allows for a user-friendly
syntax to setup optimisation problems. We focus on the implementation of
previously published algorithms for nonlinear model predictive control [82], which
are the first main contribution of the second part of this thesis1. Computational
performance of these algorithms is illustrated by controlling the start-up of a
continuous stirred tank reactor model.

7.1 Overview of the Software Package

We motivate the development of the ACADO Toolkit, summarise its scope and
elaborate on its algorithmic features. Moreover, its software design is outlined.
Our presentation closely follows the description given in [82, 128].

1The ACADO Toolkit has been jointly coded with Boris Houska, who is main author of the
symbolic expressions, differentiation routines, numerical integrators, and routines for parameter
estimation and robust optimisation. Moreover, Filip Logist has contributed to the multi-objective
optimisation and David Ariens wrote a flexible interface for Matlab.

111



112 ACADO TOOLKIT

7.1.1 Introduction and Scope

While linear MPC generally requires a dedicated QP solver, a couple of additional
algorithmic routines are required to tackle nonlinear MPC problems as outlined
in Chapter 6 for direct methods. When searching the literature, a number of
optimisation software packages for solving nonlinear optimal control problems (1.2)
can be found. In order to motivate the development of the ACADO Toolkit, we
briefly discuss some frequently used packages:

• A very popular interior-point algorithm for optimising large-scale differential
algebraic systems is the open-source package Ipopt [235, 236], originally
developed by Andreas Wächter and Larry Biegler. It can be combined with
collocation methods for discretising continuous-time dynamic systems and
implements a filter strategy as globalisation technique. Ipopt is written
in C/C++ or FORTRAN, but uses modelling languages like AMPL or Mat-

lab to provide a more convenient user interface and to allow for automatic
differentiation.

• The Matlab package PROPT [183] receives increasing attention. PROPT is a
commercial software tool developed by Tomlab Optimization Inc. It solves
optimal control problems based on collocation techniques, and uses existing
NLP solvers such as KNITRO [45] or SNOPT [100]. The use of Matlab syntax
increases the user-friendliness of PROPT but restricts its use to platforms on
which Matlab is available.

• Recently, the open-source code dsoa has been published by Brian Fabien [74].
This package is written in C/C++ and discretises differential algebraic
systems based on implicit Runge-Kutta methods [121]. Unfortunately, the
package only implements a single shooting method, which is often not
advisable for nonlinear optimal control problems. An SQP method is used
to solve the resulting NLP.

• Another SQP-based optimal control package is MUSCOD-II, originally
developed by Daniel Leineweber [156]. It discretises the differential algebraic
systems based on backward differentiation formula (BDF) [4] or Runge-Kutta
integration methods and uses direct multiple shooting [38]. MUSCOD-II is
proprietary software written in C/C++. Its numerical algorithms seem to
be more elaborated than those of dsoa and also support optimal control
problems comprising integer-valued variables.

• Finally, the development of software packages dedicated to nonlinear MPC
in the process industry has been reported in the literature: The open-source
packages OptCon [216] and NEWCON [204] both employ a multiple shooting
method in combination with the sparse SQP method HQP [90].



OVERVIEW OF THE SOFTWARE PACKAGE 113

Each of the above packages has its particular strengths and all of them have
proven successful for a specific range of applications. As they are all tailored to a
certain choice of underlying numerical algorithms, it is usually problem-dependent
which one is most suited. Moreover, their specialised software design renders it
difficult to combine algorithmic ideas from different packages or to extend them
with new mathematical concepts. Finally, most packages aim at users with a
sound programming background and some of them are either not freely available
or rely on proprietary external packages (like the sparse linear system solver within
Ipopt).

The ACADO Toolkit has been designed to overcome these issues. Besides
the efficiency of the implementation, four key properties have been identified
that are believed to be crucial for any automatic control software based on
dynamic optimisation. These properties have guided the implementation of the
ACADO Toolkit:

1. Open-source. As such a software package should be freely available at least
to academic users, the ACADO Toolkit is distributed under the GNU Lesser
General Public Licence (LGPL) [134]. Releasing the software as open-source
code also allows other researchers to reproduce all results easily, to check
whether all steps of an algorithm have been implemented as stated and to
try out own modifications.

2. User-friendly. The syntax to formulate optimal control problems should be
as intuitive as possible. Thus, the ACADO Toolkit makes intensive use of the
object-oriented capabilities of C++, in particular operator overloading, to
allow the user to formulate control problems in a way that is very close to
the usual mathematical syntax (see the example listing in Section 7.3). For
experienced users this might only be a question of convenience. But given
the fact that dynamic optimisation is more and more widely used in many
different engineering applications, also non-experts with little programming
experience should be able to formulate their control problems within a
reasonable period of time. Another aspect of user-friendliness requires that
the software should, as far as possible, also make consistent default choices
for algorithmic settings and initialisations automatically in case they are not
provided by the user.

3. Extensible code. A favourable feature is a software design that makes it
easy to extend the package by linking existing algorithms and adding new
developments while avoiding the duplication of code. The ACADO Toolkit

realises this requirement by a careful interface design guaranteeing that
almost all algorithmic parts could also be used stand-alone. This is
done using well-established object-oriented software design concepts such
as abstract base classes and inheritance.



114 ACADO TOOLKIT

4. Self-contained. In particular for use in model predictive controllers
on embedded hardware, it is important that the software must only
depend on external packages if really inevitable (see also the discussion
in Subsection 5.1.2). While linking additional libraries during offline
simulations is usually less of a problem, the main package should provide
a mode to run stand-alone on the controller hardware if possible. The
ACADO Toolkit is written in a completely self-contained manner and
optionally allows one to use external packages for graphical output or
specialised linear algebra operations (e.g. sparse solvers for linear systems).

The latter three design goals are typically conflicting with the efficiency of the
implemented algorithms. Let us briefly summarise how the ACADO Toolkit deals
with this trade-off: First, the symbolic syntax introduces a certain runtime
overhead, which can become considerable if the problem formulation comprises
very lengthy expressions. However, as all symbolic expressions need to be pre-
processed only once in an initialisation phase, this overhead might be compensated
by the ability to automatically detect and exploit structural information of the
problem formulation (see Subsection 7.1.2). Second, some algorithmic overhead is
introduced by the object-oriented design of the ACADO Toolkit (e.g. due to virtual
inheritance) that keeps the package extensible. Though it is hard to quantify this
effect, it is believed to be minor as executing the respective parts of a numerical
algorithm is typically much more expensive than switching between different
variants of them. Third, keeping the code self-contained (and open-source) can
introduce a serious loss of efficiency as it prevents the use of existing highly efficient
implementations of certain algorithmic components. This seems to be particularly
crucial for the implementation of linear algebra routines (such as BLAS [31] or
LAPACK [6]), which are at the base of any numerical algorithm. By encapsulating
these operations in dedicated classes, the ACADO Toolkit in principle allows to
replace the built-in implementation by existing linear algebra packages (as has
been done with CSPARSE [55]). This promises significant runtime improvements
for larger-scale problem formulations.

The ACADO Toolkit can deal with the following four problem classes:

1. Optimal control problems of the following form:

min
x(·),z(·),

u(·),p,T

t0+T∫
t0

ψ
(
t, x(t), z(t), u(t), p

)
dt + φ

(
x(t0 +T ), z(t0 +T ), p, t0 +T

)

s. t. ẋ(t) = f
(
t, x(t), z(t), u(t), p

)
∀ t ∈ [t0, t0 + T ] ,

0 = g
(
t, x(t), z(t), u(t), p

)
∀ t ∈ [t0, t0 + T ] ,

0 ≥ c
(
t, x(t), z(t), u(t), p

)
∀ t ∈ [t0, t0 + T ] ,

0 ≥ r
(
x(t0), z(t0), x(t0 + T ), z(t0 + T ), p, t0 + T

)
.

(7.1)



OVERVIEW OF THE SOFTWARE PACKAGE 115

This formulation extends the one given in Definition 1.1 by also including
algebraic states z : R→ RnZ for dealing with differential algebraic equation
(DAE) models. Moreover, the horizon length does not need to be fixed but
might also be subject to optimisation.

The algorithms implemented in ACADO Toolkit assume that the differential
and algebraic right-hand side functions f and g are sufficiently smooth.
Moreover, it is assumed that the function ∂g

∂z
is always regular, i.e. that

the DAE is of index one. The remaining functions, namely the Lagrange
term ψ, the Mayer term φ, the path constraint function c, as well as the
boundary constraint function r are assumed to be at least twice continuously
differentiable in all their arguments.

2. Multi-objective optimisation and optimal control problems, which require the
simultaneous minimisation of more than one objective. These multi-objective
optimisation problems typically result in a set of Pareto optimal solutions
instead of one single (local) optimum. More details can be found in [163]
and the references therein.

3. Parameter and state estimation problems, where parameters, unknown
control inputs or initial states are to be identified by measuring an output
of a given (nonlinear) dynamic system.

4. Model predictive control problems and online state estimation, where
parameterised dynamic optimisation problems have to be solved repeatedly
to obtain a dynamic feedback control law. We will focus on this problem
class in Section 7.2.

We will now outline the main algorithmic features of the ACADO Toolkit and also
give an overview of its software design.

7.1.2 Algorithmic Features

Symbolic Syntax

One fundamental requirement for any optimal control package is that functions
such as objectives, differential equations or constraint functions can be provided
by the user in a convenient manner. This is often realised by allowing the user to
link C functions, for example, implementing the respective mathematical functions
via a pre-defined interface. Also the ACADO Toolkit provides this possibility but
implements a more powerful symbolic syntax in addition to that. The whole
optimal control problem (7.1) can be formulated based on symbolic expressions
that can be easily used to build up complex model equations as well as user-defined
objective and constraint functions. Due to operator overloading and carefully



116 ACADO TOOLKIT

designed C++ classes, the syntax can be used very similar to usual C/C++ code.
This is illustrated for a simple function in Listing 7.1 and for a complete optimal
control problem formulation in Listing 7.2 on page 133.

The symbolic syntax of the ACADO Toolkit offers the following benefits:

• It allows to automatically detect structural information for all symbolically
specified functions. For example, the implementation offers routines that
check whether a function is convex or concave based on the concept of
disciplined convex programming [112]. Moreover, sparsity patterns or
dependencies on certain arguments might be detected.

• It provides a user-friendly way to formulate optimisation problems that
mimics the usual mathematical syntax. It allows to give user-defined names
to all occurring variables, which can greatly increase the readability of
the code, in particular for small- to medium-size problem formulations.
Moreover, the above-mentioned auto-detection routines allow the user to
determine the structure and dimensions of all functions and intermediate
values internally, taking away this effort from the user.

• The symbolic notation of functions allows the ACADO Toolkit to provide
routines for automatic- and symbolic differentiation (in addition to numeric
differentiation). Automatic differentiation (AD) [28, 115, 116] is imple-
mented in its forward and adjoint mode for first and (mixed) second order
derivatives. Moreover, all expressions can be differentiated symbolically
returning an expression again, like AD with source code transformation.
This functionality can be used recursively leading to symbolic derivatives
of arbitrary order. Nevertheless, by also allowing to link user-defined C

functions by means of the Function class, the ACADO Toolkit also supports
existing AD packages such as ADOL-C [116].

• Within optimal control algorithms, the model equations are typically
evaluated many times. Thus, another useful benefit of the symbolic syntax
is the possibility to speed-up function evaluation by detecting and exploiting
sparsity patters when performing matrix-vector operations. Moreover, it
allows the user to define intermediate variables, like the variable tmp in
Listing 7.1, occurring several times within a function definition that has to
be evaluated only once.

• Implementing functions within the symbolic ACADO syntax also allows to
export these functions in the form of optimised plain C code. This feature
will be used and discussed in detail within the ACADO Code Generation tool
presented in Chapter 8.



OVERVIEW OF THE SOFTWARE PACKAGE 117

Listing 7.1: Illustration of ACADO Toolkit’s symbolic syntax by defining a simple
two-dimensional function.

int main ( )
{

D i f f e r e n t i a l S t a t e x ;
Control u ;
I n t e r m e d i a te S t a te tmp ;
Function f ;

tmp = 0. 5∗ x + 1 . 0 ;

f << exp ( x ) + u ;
f << exp ( tmp + exp ( tmp ) ) ;

// . . .

return 0 ;
}

Integration Algorithms

As discussed in Chapter 6, direct single- or multiple shooting methods for optimal
control require to simulate ODE (or DAE) systems. Moreover, sensitivities of the
state trajectory with respect to initial values, control inputs or parameters have to
be obtained efficiently. Consequently, the ACADO Toolkit comes along with state-
of-the-art integration routines, namely several Runge-Kutta methods [120] and a
BDF method. The BDF integrator is based on the algorithmic ideas in [10, 15, 190]
and can be used for stiff differential or differential algebraic equations. It can also
deal with fully implicit DAEs of index 1:

∀ t ∈ [t0, t0 + T ] : f(t, ẋ(t), x(t), z(t), u(t), p, T ) = 0 . (7.2)

However, note that in most optimal control problems arising in practice the right-
hand side f is linear in ẋ.

All integrators can compute first and second order sensitivities. The differentiation
can either be based on internal numerical differentiation [34, 15] or on (internal)
automatic differentiation (provided that the right-hand side function is given in
ACADO syntax). It should be mentioned that the integration routines that are
currently implemented within the ACADO Toolkit are similar to existing integrator
packages like the SUNDIALS suite [126] or DAESOL-II [3] with respect to both the
algorithmic strategies as well as performance.



118 ACADO TOOLKIT

Discretisation of Dynamic Systems

The ACADO Toolkit implements both a single- and a multiple shooting discreti-
sation of the infinite-dimensional optimal control problem (7.1). For doing so,
either of the above-mentioned integration methods can be used. Moreover, also a
discrete-time variant of formulation (7.1) is supported (where integration becomes
a simple iterative function evaluation). As a suitable software design completely
decouples the state discretisation from the optimisation algorithm for solving the
resulting NLP, also direct collocation schemes can be added easily.

Nonlinear Optimisation Algorithms

Discretising the optimal control problem by any direct method leads to specially
structured NLPs of the form (6.7). For solving them efficiently, the ACADO Tool-

kit currently provides different SQP-type methods and offers interfaces to couple
further SQP or IP implementations.

The implemented SQP-type methods offer different possibilities to approximate the
Hessian of the underlying QP: either the exact Hessian is computed, (full or block-
wise) BFGS updates are employed [194] or a Gauss-Newton approximation [33] is
used. For solving the underlying QP, the ACADO Toolkit exploits the sparsity
introduced by a multiple shooting discretisation via state-elimination. The
resulting dense QPs are solved by means of qpOASES as presented in Chapter 4.
In case an underlying QP becomes infeasible during the SQP iterations, all QP
constraints are automatically relaxed using slack variables whose ℓ1 or ℓ2 norm
is penalised in the objective function. The SQP method can either always take
full-steps or employs a line search globalisation routine as described in [194, 122].
Moreover, auto-initialisation techniques are implemented to increase the reliability
of the optimisation routines.

For solving parameterised NLPs arising in the nonlinear MPC context, two variants
of the real-time iteration scheme [62] have been implemented. Section 7.2 discusses
them in detail.

7.1.3 Software Design

The ACADO Toolkit has been designed as algorithm collection, whose generic
interfaces shall allow the user to extend the package easily. This can either be
done by adding functionality based on existing algorithmic building blocks or by
(optionally) linking external packages. Thus, from a developers point of view, an
object-oriented design providing interfaces based on (abstract) base classes was
a natural choice. Moreover, the object-oriented design combined with extensive



OVERVIEW OF THE SOFTWARE PACKAGE 119

operator overloading allowed to implement the user-friendly symbolic syntax for
formulating optimal control problems. Further design goals and decisions have
been discussed in Subsection 7.1.1.

For reflecting the different steps for solving optimal control problems based on
direct methods, the following hierarchical algorithmic layers can be distinguished.
Typically, classes at lower levels serve as members of higher-level classes:

1. Low-level data structures: All basic expressions of the symbolic syntax
(represented by the base classes Expression and Operator) as well as the
classes Matrix, Vector and EvaluationPoint.

2. Function evaluations: The base class Function that evaluates both symbolic
functions and functions given as C code and their derivatives. Also the class
VariablesGrid representing a discrete-time sequence of Vectors as well as
the classes ObjectiveElement and ConstraintElement for composing the
objective and constraint formulation, respectively, can be categorised here.

3. Integration routines: The class Integrator provides a base class for
interfacing numerical integrators for use in shooting methods or for plain
simulations. They integrate ODE/DAE systems given in form of a
DifferentialEquation (derived from the class Function).

4. Dynamic discretisation routines: The class DynamicDiscretization serves
as a base class for interfacing discretisation methods such as single and
multiple shooting and collocation.

5. NLP solvers: The base class NLPsolver provides a generic interface for
algorithms solving NLP problems, like SQP or IP methods. Moreover,
it turned out to be advantageous to also introduce the base classes
BandedCPsolver and DenseCPsolver for interfacing solvers for banded and
dense convex programming problems (CPs) (a convex generalisation of QPs).

6. High-level optimisation tools: Classes that organise the selection of under-
lying algorithmic components providing numerous options to the user, such
as the class OptimizationAlgorithm for optimal control problems and the
class RealTimeAlgorithm for MPC problems.

Having a look at this hierarchy leads to an important design issue: It would
be highly desirable that classes at intermediate levels can be used both within
algorithmic building blocks at higher levels and stand-alone. In the first case,
developers of new algorithms need to rely on highly efficient implementation
avoiding any overhead as far as possible. The second case mainly occurs when
users, for example, want to run plain simulations using one of the integrators in a
convenient manner.



120 ACADO TOOLKIT

For resolving these potentially conflicting use cases of intermediate classes, the
following design has been realised: Algorithmic building blocks are tailored to
the needs of algorithm developers and are implemented without dedicated user
interface. The most important ones are depicted in Figure 7.1, which also shows
that they are derived from the common abstract base class AlgorithmicBase

to collect common functionality. For example, we find back the above-mentioned
classes Integrator, DynamicDiscretization and NLPsolver. On the other hand,
additional user interface classes have been introduced to provide conveniently
usable stand-alone versions of the respective algorithmic building block, which they
hold as a private member. All user interface classes are derived from the common
base class UserInteraction which provides generic functionality to log and plot
algorithmic information and to handle user-defined options (see Figure 7.2). Note
that the current design does not make the distinction between developer and
user class for the top-level class OptimizationAlgorithm and that no separate
user interfaces for solving general NLPs or performing an arbitrary dynamic
discretisation are provided yet. The class SimulationBlock will be discussed
later in Subsection 7.2.4.

Figure 7.1: UML class diagram illustrating the most important algorithmic
building blocks of the ACADO Toolkit.



MPC ALGORITHMS 121

Figure 7.2: UML class diagram illustrating a couple of user interfaces of the
ACADO Toolkit.

7.2 MPC Algorithms

This section outlines two algorithmic variants of the real-time iteration scheme [62]
that have been implemented within the ACADO Toolkit. Moreover, its built-
in simulation environment for performing realistic closed-loop simulations is
introduced.

7.2.1 Generalised Gauss-Newton Method

The ACADO Toolkit implements a generalised Gauss-Newton method [33, 34] that
turned out to be suited for optimal control problems (1.2) comprising a so-called
tracking objective function of the form:

t0+tp∫

t0

ŷ(t)′Qŷ(t) + û(t)′Rû(t) dt + x̂(t0 + tp)′P x̂(t0 + tp) , (7.3)

where all quantities are defined as in the linear case in Definition 1.3. Single and
multiple shooting discretisations are implemented to transform the problem into
a (parametric) NLP. We will describe the real-time iteration algorithms based on
a multiple shooting method.

The shooting methods as implemented in the ACADO Toolkit, introduce a piecewise
constant control parameterisation

uappr
i (τi + t; qi)

def
= qi ∀ t ∈ [0, τi+1 − τi) ∀ i ∈ {0, . . . , np − 1} , (7.4a)

uappr
i (t0 + tp; qi)

def
= qnp−1 , (7.4b)



122 ACADO TOOLKIT

with qi ∈ Rnu for all i, 0 ≤ i ≤ np, on an arbitrary but fixed time grid

t0 = τ0 < τ1 < . . . < τnp = t0 + tp . (7.5)

Introducing piecewise constant control inputs is very common in the MPC context,
though [186] elaborates on the advantage of piecewise linear parameterisations.
Continuous piecewise linear control inputs could be formulated within the
ACADO Toolkit by introducing additional auxiliary states.

The multiple shooting method, as introduced in Subsection 6.1.2, looks on each
interval i ∈ {0, . . . , np − 1} for a solution xappr

i (t; si, qi) to the initial value problem

xappr
i (τi; si, qi) = si , (7.6a)

ẋappr
i (t; si, qi) = f

(
xappr
i (t; si, qi), qi

)
∀ t ∈ [τi, τi+1] , (7.6b)

with si ∈ Rnx for all i ∈ {0, . . . , np}. The solution xappr
i (τi+1; si, qi) at each

multiple shooting node is evaluated numerically by using a Runge-Kutta or
BDF integrator. As common for shooting methods, the ACADO Toolkit employs
numerical integrators with adaptive step-size control in order to ensure a given
integration accuracy.

Based on this discretisation, the tracking objective function (7.3) is evaluated at
the multiple shooting nodes only and is thus approximated by

‖V (s0, X, U)‖2

2

def
=

np−1∑

i=0

[(
h(si, qi) − y

ref(τi)
)

′

Q
(
h(si, qi) − y

ref(τi)
)

+
(
qi − u

ref(τi)
)

′

R
(
qi − u

ref(τi)
)]

+
(
snp − x

ref(t0 + tp)
)

′

P
(
snp − x

ref(t0 + tp)
)

,

(7.7)

where we summarise all control inputs in U
def
=
(
q′

0, . . . , q
′
np−1

)
′ ∈ Rnu·np and

all artificial initial values in X
def
=
(
s′

1, . . . , s
′
np

)
′ ∈ Rnx·np . Moreover, multiple

shooting introduces matching conditions, ensuring a continuous state trajectory
at the solution, that can be summarised as

G(s0, X, U)
def
=




s1 − x
appr
0 (τ1; s0, q0)

s2 − x
appr
1 (τ2; s1, q1)

...
snp − x

appr
np−1(t0 + tp; snp−1, qnp−1)


 . (7.8)



MPC ALGORITHMS 123

Also path and endpoint constraints (1.2e)–(1.2f) are discretised and imposed at
the multiple shooting nodes only, which can be written as

H(s0, X, U)
def
=




c (s0, q0)
...

c
(
snp−1, qnp−1

)

cterm
(
snp

)


 . (7.9)

Altogether, this leads to the following specially structured, parameterised NLP
with least-squares objective function:

NLP(w0) : min
s0,X,U

‖V (s0, X, U)‖22 (7.10a)

s. t. s0 = w0 , (7.10b)

G(s0, X, U) = 0 , (7.10c)

H(s0, X, U) ≤ 0 , (7.10d)

The ACADO Toolkit solves this least-squares NLP with a generalised Gauss-Newton
method as outlined in Subsection 6.2.3. An offline full-step version of this method

starts from an initial guess
(
s

(0)
0 , X(0), U (0)

)
and updates the iterates in the form

(
s

(k+1)
0 , X(k+1), U (k+1)

)
def
=
(
s

(k)
0 , X(k), U (k)

)
+
(

∆s
(k)
0 ,∆X(k),∆U (k)

)
, (7.11)

where
(
∆s

(k)
0 ,∆X(k),∆U (k)

)
solves the convex QP

min
∆s0,∆X,∆U

‖V + Vs0 ∆s0 + VX∆X + VU∆U‖22 (7.12a)

s. t. s0 + ∆s0 = w0 , (7.12b)

G+Gs0 ∆s0 +GX∆X +GU∆U = 0 , (7.12c)

H +Hs0∆s0 +HX∆X +HU∆U ≤ 0 . (7.12d)

Here, we dropped the iteration index k and introduced the following short hands
for notational convenience:

V
def
= V (s0, X, U) , Vv

def
= ∂vV (s0, X, U) ∀ v ∈ {s0, X, U} , etc. (7.13)

As discussed in Subsection 6.3.1, the sparsity of this large-scale QP (7.12) can be
exploited in different ways. The ACADO Toolkit currently implements an approach



124 ACADO TOOLKIT

that eliminates the variable ∆X from the QP formulation in order to yield the
smaller-scale but dense convex QP:

min
∆s0,∆U

‖D +Ds0∆s0 +DU∆U‖2
2 (7.14a)

s. t. s0 + ∆s0 = w0 , (7.14b)

E + Es0 ∆s0 + EU∆U ≤ 0 , (7.14c)

where the following “condensing matrices” are used:

D
def
= V − VXG

−1
X G , Ds0

def
= Vs0 − VXG

−1
X Gs0 , DU

def
= VU − VXG

−1
X GU ,

E
def
= H −HXG

−1
X G , Es0

def
= Hs0 −HXG

−1
X Gs0 , EU

def
= HU −HXG

−1
X GU .

(7.15)

Note that the matrix GX has a special structure with unit matrices on its diagonal
blocks. Thus is it always invertible and can be inverted without any matrix
factorisation.

In a second condensing step, also the variable ∆s0 can be eliminated leading to a
dense QP with only nu ·np optimisation variables. By default, the ACADO Toolkit

solves the dense QP (7.14) with qpOASES (see Chapter 4), which performs this
second condensing step implicitly by fixing the variable ∆s0 to w0 − s0.

Solving the dense QP (7.14) delivers step directions ∆s
(k)
0 and ∆U (k), the

corresponding step direction for the state trajectory can be obtained by

∆X(k) = −G−1
X

(
G+Gs0 ∆s

(k)
0 +GU∆U (k)

)
. (7.16)

After this expansion step, the next Gauss-Newton iterate can be obtained.

7.2.2 Real-Time Iteration Algorithm

For the MPC context, the described offline Gauss-Newton method is slightly
modified to perform real-time iterations as summarised in Subsection 6.4.5. For
doing so, all computations are divided into a preparation and a usually much
shorter feedback phase. The preparation phase starts with expanding the previous
solution of the dense QP (7.14) to obtain ∆X(k−1). Afterwards, the current iterate(
s

(k)
0 , X(k), U (k)

)
is obtained, at which the functions R, G and H are evaluated and

all derivatives for setting up the large-scale QP (7.12) are computed. Moreover,



MPC ALGORITHMS 125

the variable ∆X(k) is eliminated to yield an updated condensed, smaller-scale
QP (7.14). Once the current initial value w0 is known, the feedback phase only
solves this updated dense QP and immediately returns the new approximately

optimal control input q
(k+1)
0

def
= q

(k)
0 + ∆q

(k)
0 to the process. The ACADO Toolkit

implements this Gauss-Newton real-time iteration algorithm, which is summarised
in Algorithm 7.1.

Algorithm 7.1 (Single Real-Time Iteration)

input: current initial value w0 and starting iterate
(
s

(k)
0 , X(k), U (k)

)
,

e.g. obtained from previous real-time iteration

output: next Gauss-Newton iterate
(
s

(k+1)
0 , X(k+1), U (k+1)

)
, including the

first piece of an approximately optimal control input q
(k+1)
0 ∈ Rnu

for current sampling instant

(P2) Evaluate V, G, H and all first-order derivatives Vs0 , VX , Vu, Gs0 etc.

at
(
s

(k)
0 , X(k), U (k)

)
.

(P3) Eliminate variable ∆X , i.e. compute the condensing matrices (7.15).

(P4) Wait for current initial value w0.

(F1) Solve the dense convex QP (7.14) to yield
(
∆s

(k)
0 ,∆U (k)

)
.

(F2) Send first control piece q
(k+1)
0 ← q

(k)
0 + ∆q

(k)
0 immediately to the process.

(P1) Obtain ∆X(k) via Equation (7.16) and compute next iterate(
s

(k+1)
0 , X(k+1), U (k+1)

)
, possibly including a shift in time.

Within step (P2), first-order derivatives can be calculated by means of internal
numerical or automatic differentiation (both in forward or backward mode).

7.2.3 Time-Optimal NMPC

The ACADO Toolkit also implements a variant of the real-time iteration scheme
for a modified MPC formulation aiming at time-optimal behaviour of the process:



126 ACADO TOOLKIT

min
x(·),u(·),

y(·),T

T + α ·

t0+T∫

t0

ŷ(t)′Qŷ(t) + û(t)′Rû(t) dt + α · x̂(t0 + tp)′P x̂(t0 + tp)

(7.17a)

s. t. x(t0) = w0 , (7.17b)

ẋ(t) = f
(
x(t), u(t)

)
∀ t ∈ Tp , (7.17c)

y(t) = h
(
x(t), u(t)

)
∀ t ∈ Tp , (7.17d)

0 ≥ c
(
y(t), u(t)

)
∀ t ∈ Tp , (7.17e)

x(t0 + T ) = xref(t0 + T ) , (7.17f)

T ≥ Tmin , (7.17g)

where we follow the notation of Definition 1.3. Moreover, T denotes the free length
of the prediction horizon; α ≥ 0 and Tmin > 0 are tuning parameters that will be
discussed now.

This time-optimal NMPC formulation has been proposed in [257] and keeps the
length of the prediction horizon free for optimisation (in contrast to the standard
formulation (1.2)). Therefore, it needs to explicitly include the constraint that the
state reaches the desired reference value at the end of the time horizon. Moreover,
a lower bound Tmin on T needs to be introduced as the problem could otherwise
become degenerated for T = 0. Finally, the tuning parameter weights the tracking
term of the objective, where α = 0 would lead to a truly time-optimal formulation.

If time-optimality is the true control objective, the advantage of formulation (7.17)
is that it explicitly searches for time-optimal solutions. However, leaving the length
of the prediction horizon free for optimisation introduces a significant source of
nonlinearity and nonconvexity into the optimisation problem. Thus, it becomes
more likely that the optimisation algorithm gets stuck in a sub-optimal local
minimum. Therefore, this formulation seems only to be practical if a good initial
guess for the (global) solution is available.

One might ask why a weighted tracking term is kept within the time-optimal
NMPC formulation. The reason to introduce a lower bound on T along with
the addition of a small least-squares objective is to avoid deadbeat behaviour of
the controller when close to the steady-state. Instead, it is easy to see that once
T = Tmin is possible, i.e. the steady-state could be reached within the time Tmin,
the controller behaviour automatically switches from time-optimal to conventional



MPC ALGORITHMS 127

model predictive control: if no further disturbance occurs, the controller will
behave from that moment on exactly as a tracking MPC controller with a control
horizon of length Tmin.

Algorithmically, the horizon length T can be introduced as additional differential
state xnx+1 that satisfies the trivial differential equation ẋnx+1(t) = 0 and whose
initial value xnx+1(t0) is free. Additionally including the terminal constraint x(t0 +
T ) = xref(t0 + T ) and the lower bound on T = xnx+1 is straight-forward. Thus,
the time-optimal formulation (7.17) results in a sparse NLP that is similar to
formulation (7.10):

NLP(w0) : min
s0,X,U

snp,nx+1 + α · ‖V (s0, X, U)‖2
2︸ ︷︷ ︸

=F (s0,X,U)

(7.18a)

s. t. s0,i = w0,i ∀ i ∈ {1, . . . , nx} , (7.18b)

G(s0, X, U) = 0 , (7.18c)

H(s0, X, U) ≤ 0 , (7.18d)

where sj,i denotes the ith component of sj ∈ Rnx+1 for all j ∈ {0, . . . , np}.

Again, all control inputs are summarised in U
def
=
(
q′

0, . . . , q
′
np−1

)
′ ∈ Rnu·np and

X
def
=
(
s′

1, . . . , s
′
np

)
′ ∈ R(nx+1)·np summarises all (augmented) artificial initial

values. The functions V , G and H are adapted variants of the ones defined in (7.7)–
(7.9) that reflect the augmented dimensions of s0 and X as well as the additional
constraints.

The optimal solution of (7.18) usually depends strongly nonlinearly on the choice
of T . Thus, using only first-order derivative information as the Gauss-Newton
method of Subsection 7.2.1 might not lead to convergence. Therefore, the
ACADO Toolkit allows one to rather formulate the QP subproblems (6.17) based
on an exact computation of the Hessian matrix of the Lagrange function as
summarised in Algorithm 7.2. Calculating also second-order derivatives increases
the computational load of the SQP method but the other ideas of the real-
time iteration scheme remain valid. The only remaining modification is that the
expansion step described in Equation (7.16) also needs to expand the dual solution
information of the dense QP (see [155]).



128 ACADO TOOLKIT

Algorithm 7.2 (Single Real-Time Iteration for Time-Optimal NMPC)

input: current initial value w0, starting primal/dual iterate
(
s

(k)
0 , X(k), U (k)

)

and λ(k), µ(k), e.g. obtained from previous real-time iteration

output: next primal/dual SQP iterate
(
s

(k+1)
0 , X(k+1), U (k+1)

)
, λ(k+1), µ(k+1)

including the first piece of an approximately optimal control input

input q
(k+1)
0 ∈ Rnu for current sampling instant

(P2) Evaluate F, G, H and all first-order derivatives at
(
s

(k)
0 , X(k), U (k)

)
. More-

over, compute Hessian matrix ∇2
(s0,X,U)L

(
(s

(k+1)
0 , X(k+1), U (k+1)), λ(k), µ(k)

)

of the Lagrange function (6.13).

(P3) Eliminate variable ∆X from resulting QP, i.e. compute condensing matrices
similar to (7.15).

(P4) Wait for current initial value w0.

(F1) Solve dense convex QP similar to (7.14) to yield
(
∆s

(k)
0 ,∆U (k)

)
.

(F2) Send first control piece q
(k+1)
0 ← q

(k)
0 + ∆q

(k)
0 immediately to the process.

(P1) Expand QP solution to obtain ∆X(k), λ(k+1), µ(k+1) and compute next

primal iterate
(
s

(k+1)
0 , X(k+1), U (k+1)

)
, possibly including a shift in time

(see [155] for details).

7.2.4 Simulation Environment

The ACADO Toolkit also provides a built-in simulation environment for performing
realistic closed-loop simulations [82]. Its main components are the Process class
for setting up a simulation of the process to be controlled and the Controller

class for implementing the closed-loop controller. This controller can later be used
stand-alone for real-world feedback control applications.

The Process class has as members a dynamic system, comprising a differential
equation and an optional output function, modelling the process as well as an
integrator capable of simulating these model equations. The simulation uses
(optimised) control inputs from the controller, which might be subject to noise
or delays that can be introduced via an optional Actuator. In addition, so-
called process disturbances can be specified by the user for setting up arbitrary



MPC ALGORITHMS 129

disturbance scenarios for the simulation. Finally, the outputs obtained by
integrating the model equations can again be subject to noise or delays introduced
via an optional Sensor. It is important to note that the model used for simulating
the process does not need to be the same as specified within the optimal control
formulations within the controller.

The Controller class consists of three major blocks: first, an online state/pa-
rameter estimator uses the outputs of the process to obtain estimates for the
differential states or other parameters. This estimation can be based on online
optimisation, e.g. moving horizon estimation, but also a linear or extended Kalman
filter could be used. Second, a reference trajectory can be provided to the control
law. These references can either be statically given by the user according to a
desired simulation scenario or can be calculated dynamically based on information
from the estimator. Finally, both the state/parameter estimates as well as the
reference trajectory are used by the control law class to compute optimised control
inputs. The control law will usually be a RealTimeAlgorithm based on the real-
time iteration algorithms as described in Subsections 7.2.1–7.2.3, but can also be
something as simple as a linear state feedback.

While the Process is conceptionally thought to produce a continuous output
stream, output of the Controller comes in sampled form. Its sampling times
are usually pre-defined by the user. Communication between Process and
Controller is orchestrated by an instance of the SimulationEnviroment class. It
also features the simulation of computational delays, i.e.i.e. it can delay the control
input to the Process by the amount of time the Controller took to determine the
control inputs. This feature seems to be crucial for realistic closed-loop simulations
of fast processes where the sampling time is not negligible compared to the settling
time of the controlled process.

Figure 7.3 illustrates the mentioned classes of the built-in simulation environment,
which are all derived from the base class SimulationBlock. In the program-
ming philosophy introduced in Subsection 7.1.3, all classes of the simulation
environment are user interfaces, thus the SimulationBlock is derived from the
UserInteraction class. Figure 7.3 also shows the class RealTimeAlgorithm,
which implements the mentioned variants of the real-time iteration scheme.



130 ACADO TOOLKIT

Figure 7.3: UML class diagram illustrating the main building blocks of the built-in
simulation environment of the ACADO Toolkit.

7.3 Numerical Example

7.3.1 Start-Up of a Continuous Stirred Tank Reactor

For illustrating the two variants of the real-time iteration algorithm as imple-
mented within the ACADO Toolkit, we consider the nonlinear ODE model of a
continuous stirred tank reactor (CSTR). The formulation we use comprises four
states, x ∈ R4, and two controls, u ∈ R2. Here, the first two states, cA and cB, are
the concentrations of cyclopentadiene (substance A) and cyclopentenol (substance
B), respectively, while the other two states, ϑ and ϑK , denote the temperature in
the reactor and temperature in the cooling jacket of the tank reactor. Thus, the
state vector is given by

x(t)
def
=




cA(t)
cB(t)
ϑ(t)
ϑK(t)


 . (7.19)



NUMERICAL EXAMPLE 131

The first input is the feed inflow which is controlled via its scaled rate u1(t)
def
= V̇ (t)

VR
,

while the temperature ϑK is held down by an external heat exchanger whose heat

removal rate u2(t)
def
= Q̇K(t) can be controlled as well.

The model is given by the following nonlinear ODE system:

ċA(t) = u1(t)(cA0 − cA(t))− k1(ϑ(t))cA(t)− k3(ϑ(t))(cA(t))2,

ċB(t) = −u1(t)cB(t) + k1(ϑ(t))cA(t)− k2(ϑ(t))cB(t) ,

ϑ̇(t) = u1(t)(ϑ0 − ϑ(t)) + kwAR

ρCpVR
(ϑK(t)− ϑ(t))

− 1
ρCp

[
k1(ϑ(t))cA(t)H1 + k2(ϑ(t))cB(t)H2 + k3(ϑ(t))(cA(t))2H3

]
,

ϑ̇K(t) = 1
mKCP K

(u2(t) + kwAR(ϑ(t)− ϑK(t))) .

(7.20)

Therein, the reaction rate functions ki : R → R are given by

ki(ϑ(t)) = ki0 · exp

(
Ei

ϑ(t) + 273.15 ◦C

)
, i ∈ {1, 2, 3} .

These equations along with appropriate values for all parameters can be found
in [148, 62] and have been proposed as a benchmark example for NMPC in [51].

For performing the NMPC simulations, we control the start-up of this CSTR model.
The aim to is steer the reactor in minimal time from its start configuration

x(tstart)
def
=




0.0 mol
l

0.0 mol
l

85.0 ◦C
85.0 ◦C


 (7.21)

to a stable steady-state given by

xref def
=




2.14 mol
l

1.09 mol
l

114.2 ◦C
112.9 ◦C


 , uref def

=

(
14.19 h−1

−1113.5 kJ
h

)
. (7.22)

While doing so, we require the control inputs to satisfy the following constraints:

(
3.0 h−1

−9000.0 kJ
h

)
≤ u(t) ≤

(
35.0, h−1

0.0 kJ
h

)
. (7.23)



132 ACADO TOOLKIT

Listing 7.2 illustrates the formulation of the corresponding (offline) optimal control
problem in ACADO syntax.

For all simulations, we employ a multiple shooting discretisation, where the
prediction horizon [t0, t0 + 1500 s] is divided into 20 control intervals of equal
length. The sampling time is chosen to equal the length of one control interval,
i.e. 75 s. In order to focus on the main algorithmic effects, we restrict ourselves to
nominal simulations: no model-plant mismatch, no disturbances, all states can be
measured.

We present numerical results comparing both the tracking formulation (7.3) and
the time-optimal formulation (7.17) with respect to control performance and
computational load. For both formulations, we compare different algorithmic
variants. All simulations have been performed on a standard PC having a 2.8
GHz dual-core processor and 4 GB RAM.

7.3.2 Using Fully Converged Solutions

Figure 7.4 shows states and control inputs of the simulated CSTR start-up
controlled using online optimisation with fully converged solutions. We compare
the tracking NMPC formulation and the time-optimal NMPC formulation with
α = 1 and α = 0.5. As expected, the time-optimal NMPC formulation is able to
regulate the CSTR faster to the desired steady-states. This comes at the expense of
a larger overshoot at the beginning. We see that decreasing the tuning parameter
α, i.e. reducing the influence of the tracking component in the objective function,
leads to a more aggressive behaviour such that the desired steady-state is reached
even faster.

As mentioned in Subsection 7.2.3, we need to choose a lower bound Tmin on the
horizon length T when employing the time-optimal NMPC formulation. For our
simulations, we use a constant value of Tmin = 150 s which does not constrain
T in the first samples but ensures a smooth tracking NMPC behaviour once the
steady-state can be reached within 150 s.

Figure 7.5 compares the computational load of different algorithmic variants
by illustrating the total runtime per sampling instant required to solve the
respective optimal control problem. The tracking NMPC formulation is solved
once employing the Gauss-Newton algorithm described in Subsection 7.2.1 and
once using an exact Hessian computation. Solution of the time-optimal NMPC
formulation is always based on an exact Hessian computation.

We can observe that runtimes vary greatly depending on the number of Newton-
type iterations needed to solve the problem, which becomes smaller when we
approach the steady-state. In case of the tracking NMPC formulation, calculation



NUMERICAL EXAMPLE 133

Listing 7.2: Symbolic formulation in ACADO syntax of an optimal control problem
comprising the CSTR model and a least-squares objective function.

int main ( ){
// . . .

// DEFINE CSTR MODEL:
// −−−−−−−−−−−−−−−−−−
D i f f e r e n t i a l E q u a t i o n f ;

D i f f e r e n t i a l S t a t e cA , cB , theta , thetaK ;
Control u ( 2 ) ;
I n t e r m e d i a te S t a te k1 , k2 , k3 ;

k1 = k10 ∗ exp ( E1/(273.15+ th e ta ) ) ;
k2 = k20 ∗ exp ( E2/(273.15+ th e ta ) ) ;
k3 = k30 ∗ exp ( E3/(273.15+ th e ta ) ) ;

f << dot (cA) == u ( 0 ) ∗ ( cA0−cA) − k1∗cA − k3∗cA∗cA ;
f << dot (cB) == − u (0)∗ cB + k1∗cA − k2∗cB ;
f << dot ( th e ta ) == u ( 0 ) ∗ ( theta0−th e ta )

−(1/( rho∗Cp ) ) ∗ ( k1∗cA∗H1 + k2∗cB∗H2 + k3∗cA∗cA∗H3)
+(kw∗AR/( rho ∗Cp∗VR) ) ∗ ( thetaK −th e ta ) ;

f << dot ( thetaK ) == (1/(mK∗CPK) ) ∗ ( u ( 1 ) + kw∗AR∗( theta−thetaK ) ) ;

// DEFINE LEAST−SQUARE FUNCTION:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Function h ;
h << cA ;
h << cB ;
h << th e ta ;
h << thetaK ;
h << u ( 0 ) ;
h << u ( 1 ) ;

Matrix S = eye ( 6 ) ;
Vector r = z e r o s ( 6 ) ;
// . . .

// DEFINE AN OPTIMAL CONTROL PROBLEM:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const double t S t a r t = 0 . 0 ;
const double tEnd = 1 5 0 0 . 0 ;

OCP ocp ( tS tart , tEnd , 20 ) ;

ocp . minimizeLSQ( S , h , r ) ;

ocp . subjectTo ( f ) ;
ocp . subjectTo ( AT START, cA == 0 . 0 ) ;
ocp . subjectTo ( AT START, cB == 0 . 0 ) ;
ocp . subjectTo ( AT START, th e ta == 85. 0 ) ;
ocp . subjectTo ( AT START, thetaK == 85. 0 ) ;
ocp . subjectTo ( 3 . 0 <= u ( 0 ) <= 35. 0 ) ;
ocp . subjectTo ( −9000.0 <= u ( 1 ) <= 0 . 0 ) ;

// DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OptimizationAlgorithm al gor i th m ( ocp ) ;

a l gor i th m . s e t ( HESSIAN APPROXIMATION, GAUSS NEWTON ) ;
a l gor i th m . s e t ( KKT TOLERANCE, 1e−5 ) ;
a l gor i th m . s o l v e ( ) ;

return 0 ;
}



134 ACADO TOOLKIT

of the exact Hessian does not seem to speed-up convergence while making each
iteration more expensive. Changing α moderately in the time-optimal NMPC
formulation does not seem to affect the overall runtime significantly.

Note that the computational performance of the ACADO Toolkit on this example
is competitive with other existing software packages: For example, solving the

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

(a) Concentration of substance A in mol/l.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

(b) Concentration of substance B in mol/l.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(c) Temperature in the reactor in ◦C.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(d) Temperature of the jacket in ◦C.

0 500 1000 1500
5

10

15

20

25

30

35

time [s]

(e) Scaled feed flow u1 in 1/s.

0 500 1000 1500
−2000

−1500

−1000

−500

0

500

time [s]

(f) Heat removal rate u2 in kJ/s.

Figure 7.4: CSTR start-up controlled using online optimisation with fully
converged solutions: tracking NMPC (solid), time-optimal NMPC with α = 1
(dashed), time-optimal NMPC with α = 0.5 (dash-dotted). Also the respective
reference values are shown (dotted, grey).



NUMERICAL EXAMPLE 135

optimal control problem at the first sampling instant with the nonlinear optimal
control package dsoa takes about 0.86 seconds to obtain the same solution
accuracy. dsoa implements a single-shooting approach and solves the resulting
small-scale NLP by means of an inexact SQP algorithm [73] based on BFGS
updates (6.19).

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No. MPC loop

Figure 7.5: Runtimes in seconds for the CSTR start-up controlled using online
optimisation with fully converged solutions: tracking NMPC (solid), tracking
NMPC using exact Hessians (dotted), time-optimal NMPC with α = 1 (dashed),
time-optimal NMPC with α = 0.5 (dash-dotted).

7.3.3 Employing the Real-Time Iteration Algorithm

Next we employ the real-time iteration algorithm performing only one Newton-
type iteration per NMPC sampling instant. Figure 7.6 illustrates states and
control inputs for the CSTR start-up when using the tracking NMPC formulation;
for comparison also the ones obtained by using the fully converged solutions are
depicted. Figure 7.7 illustrates the corresponding results for the time-optimal
NMPC formulation with α = 1.

We can see that control performance is hardly affected by restricting the
number of Newton-type iterations to one per NMPC sampling instant. This
is both due to the only mildly nonlinear behaviour of the CSTR and the
good contraction properties of the real-time iteration scheme using initial value-
embedding. Figure 7.8 illustrates that the computational load can be reduced



136 ACADO TOOLKIT

significantly when employing the real-time iteration scheme instead of using the
fully converged solutions. Again we note that runtimes of the ACADO real-time
iteration algorithms seem to be competitive, when comparing them with results
reported earlier in the literature: For example, computation times in the order of

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

(a) Concentration of substance A in mol/l.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

(b) Concentration of substance B in mol/l.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(c) Temperature in the reactor in ◦C.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(d) Temperature of the jacket in ◦C.

0 500 1000 1500
10

15

20

25

30

35

time [s]

(e) Scaled feed flow u1 in 1/s.

0 500 1000 1500
−1200

−1000

−800

−600

−400

−200

0

200

time [s]

(f) Heat removal rate u2 in kJ/s.

Figure 7.6: CSTR start-up controlled using online optimisation based on a tracking
NMPC formulation: fully converged solution (solid) and solution obtained by
employing the real-time iteration scheme performing only one Gauss-Newton
iteration per sampling instant (dashed). Also the respective reference values are
shown (dotted, grey).



NUMERICAL EXAMPLE 137

minutes for a similar setup have been reported fifteen years ago in [49], while [37,
62] report computation times of about one second (on a PC that was at most
10 times slower than the one we used to run the ACADO simulations). The next
subsection will provide a closer look at the computational load of one real-time
iteration.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

(a) Concentration of substance A in mol/l.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

(b) Concentration of substance B in mol/l.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(c) Temperature in the reactor in ◦C.

0 500 1000 1500
85

90

95

100

105

110

115

time [s]

(d) Temperature of the jacket in ◦C.

0 500 1000 1500
10

15

20

25

30

35

40

time [s]

(e) Scaled feed flow u1 in 1/s.

0 500 1000 1500
−2500

−2000

−1500

−1000

−500

0

500

time [s]

(f) Heat removal rate u2 in kJ/s.

Figure 7.7: CSTR start-up controlled using online optimisation based on a time-
optimal NMPC formulation with α = 1: fully converged solution (solid) and
solution obtained by employing the real-time iteration scheme performing only
one SQP iteration per sampling instant (dashed). Also the respective reference
values are shown (dotted, grey).



138 ACADO TOOLKIT

0 2 4 6 8 10 12 14 16 18 20 22
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

No. MPC loop

Figure 7.8: Runtimes in seconds for the CSTR start-up controlled using online
optimisation employing the real-time iteration scheme: tracking NMPC with
Gauss-Newton Hessian approximation (solid) and time-optimal NMPC with α = 1
with exact Hessian computation (dashed).

7.3.4 Computational Load of Real-Time Iterations

As described in Section 7.2.2, each real-time iteration consists of different
algorithmic steps. The most important ones are the integration of the dynamic
system including the sensitivity generation, the condensing step and the solution
of the condensed QP. Table 7.1 lists the runtimes for each of these steps for a
typical real-time iteration when controlling the CSTR start-up using the tracking
NMPC formulation. We see that the major fraction of the computation time is
spent for the sensitivity generation.

Table 7.2 reports the runtimes for a typical real-time iteration with exact Hessian
computation using the tracking NMPC formulation. When comparing the
runtimes with the ones of Table 7.1, we see that the exact Hessian computation
causes the integration and sensitivity generation to take longer, while the effort
for all other algorithmic parts basically stays the same.

Next, Table 7.3 reports the runtimes for a typical real-time iteration with exact
Hessian computation using the time-optimal NMPC formulation. The reported
runtimes are very similar to the ones reported in Table 7.2. This comes at no



NUMERICAL EXAMPLE 139

surprise as all algorithmic steps are basically the same (however, the time-optimal
NMPC formulation comprises T as an additional degree of freedom).

CPU time %
Integration and sensitivity generation 10.5 ms 69 %
Condensing 3.0 ms 20 %
QP solution (with qpOASES) 0.6 ms 4 %
Remaining operations 1.1 ms 7 %
One complete real-time iteration 15.2 ms 100 %

Table 7.1: Typical runtime performance of one Gauss-Newton real-time iteration
when controlling the CSTR start-up using the tracking NMPC formulation.

CPU time %
Integration and sensitivity generation 29.1 ms 86 %
Condensing 3.0 ms 9 %
QP solution (with qpOASES) 0.6 ms 2 %
Remaining operations 1.1 ms 3 %
One complete real-time iteration 33.8 ms 100 %

Table 7.2: Typical runtime performance of one real-time iteration with exact
Hessian computation when controlling the CSTR start-up using the tracking
NMPC formulation.

CPU time %
Integration and sensitivity generation 31.7 ms 87 %
Condensing 3.3 ms 9 %
QP solution (with qpOASES) 0.7 ms 2 %
Remaining operations 0.9 ms 2 %
One complete real-time iteration 36.6 ms 100 %

Table 7.3: Typical runtime performance of one real-time iteration with exact
Hessian computation when controlling the CSTR start-up using the time-optimal
NMPC formulation.





Chapter 8

Code Generation
for Nonlinear MPC

This chapter presents the ACADO Code Generation tool [80, 129] for generating
real-time iteration algorithms for nonlinear MPC. Based on the symbolic syntax
of the ACADO Toolkit, it allows the user to export highly efficient and self-
contained C code that is tailored to each respective MPC problem formulation. We
explain its algorithmic components and investigate its computational performance.
It is illustrated with small-scale NMPC examples that automatically generated
NMPC algorithms can significantly outperform their counterparts implemented in
a generic way. The ACADO Code Generation tool has been developed jointly with
Boris Houska and is the second main contribution of the second part of this thesis.

8.1 Introduction

The idea to automatically generate tailored source code in order to speed-up the
numerical solution of optimisation problems is not new. More than 20 years ago,
a code generation environment to export tailored implementations of Karmarkar’s
algorithm for solving LPs was presented [182]. It exported PASCAL source code
implementing a customised Cholesky decomposition as well as further matrix-
vector operations, but does not seem to have received much attention.

About one decade ago, code generation was proposed for use in nonlinear MPC.
The software AutoGenU by Ohtsuka and Kodama [181, 180] provides Mathematica

scripts to generate customised C code implementing the Continuation/GMRES
method as described in Subsection 6.4.4. AutoGenU allows the user to specify the

141



142 CODE GENERATION FOR NONLINEAR MPC

MPC problem formulation together with initialisations in the symbolic syntax of
Mathematica. Solving only one linear system per sampling instant, the exported
NMPC algorithm has been used to control an experimental hovercraft setup at
sampling times of 1.5 milliseconds [210].

Recently, code generation has attracted great attention due to the software package
CVXGEN [169]. It is based on the Matlab front-end CVX [112, 113]—which provides
a symbolic syntax to formulate and solve convex optimisation problems—and
allows the user to generate customised interior-point solvers for small-scale LP
and QP problems. In particular, linear MPC problems can be solved based
on highly efficient, auto-generated code. The main ingredient of the exported
code is a sparse Cholesky decomposition of the interior-point KKT system (6.23).
CVXGEN automatically detects the respective sparsity pattern and determines a
fixed pivoting that aims at avoiding fill-in in the Cholesky factors as far as possible.
CVXGEN is not freely available but can be tested by academic users via a dedicated
web interface [168].

After this brief review of previous approaches to auto-generate code for solving
optimisation problems, we want to summarise the two main advantages that
motivate automatic code generation:

• Speeding-up computations by tailoring the code to each specific optimisation
problem formulation. This can comprise an optimised memory management
as problem dimensions and sparsity patterns can be detected and hard-
coded beforehand. Moreover, computations of the exported code might be
organised in such a way that they maximise the cache usage of the respective
target hardware. Also loop unrolling and the correct choice of compiler
settings might speed-up computations significantly. Finally, the numerical
algorithm itself might be tailored to the specific application by leaving away
unnecessary computations.

• Increased adaptivity of the numerical algorithm to be exported by influencing
its programming syntax. For example, the code generator might offer options
to choose between single and double precision arithmetic or to avoid certain
programming constructs or calls to functions from standard libraries that are
not available on the respective target hardware1. It might even be desired
to export one and the same optimisation code in different programming
languages (like the Multi-Parametric Toolbox for explicit MPC that allows
the user to generate the online look-up table both in C and in a language
compatible with certain programmable logic controllers [153]).

1 Up to a certain extend this could also be achieved by using preprocessor directives. However,
this might greatly reduce readability and maintainability of the code.



AUTO-GENERATED REAL-TIME ITERATION ALGORITHMS 143

These benefits of code generation seem to be most relevant for real-time
optimisation algorithms that need to solve optimisation problems at very high
sampling rates. This is particularly true if these algorithms are designed
to run on embedded hardware, as this imposes specific requirements on the
implementation (see the discussion of Subsection 5.1.2). Thus, code generation
looks like a promising technique, especially for small- to medium-scale nonlinear
MPC problems.

8.2 Auto-Generated Real-Time Iteration Algorithms

We will now present the ACADO Code Generation tool for automatically generating
Gauss-Newton real-time iteration algorithms for nonlinear MPC (see Section 7.2).
It allows the user to export highly efficient and self-contained C code that is tailored
to each respective MPC problem formulation. It generalises previous work on code
generation (as in [169]) to nonlinear MPC algorithms, which (in contrast to [181])
are based on solving a full QP at each sampling instant for improving control
performance. This QP solution can either be done using an embedded variant of
qpOASES or a dense QP solver as exported by CVXGEN. Our presentation extends
the ones given in [129, 81].

8.2.1 Symbolic Problem Formulation

All three code generation tools mentioned in Section 8.1 rely on a symbolic
formulation of the optimisation problem to be solved. This comes as no surprise
as only a symbolic representation keeps all structural information that should
be exploited as far as possible to increase efficiency of the generated code. The
ACADO Code Generation tool is written as an add-on to the ACADO Toolkit and
therefore can make use of its symbolic syntax (see Subsection 7.1.2). Listing 8.1
illustrates this with a slightly adapted variant of Listing 7.2 (see page 133) for
exporting a tailored Gauss-Newton real-time iteration algorithm. All structure-
exploiting features of the ACADO Code Generation tool will be discussed in the
following subsections.

Currently, the ACADO Code Generation tool allows the user to export optimised C

code for solving nonlinear MPC problems of the following form:



144 CODE GENERATION FOR NONLINEAR MPC

min
x(·),u(·)

t0+tp∫

t0

∥∥x(t) − xref(t)
∥∥2

Q
+
∥∥u(t)− uref(t)

∥∥2

R
dt (8.1a)

+
∥∥x(t0 + tp)− xref(t0 + tp)

∥∥2

P

s. t. x(t0) = w0 , (8.1b)

ẋ(t) = f (x(t), u(t)) , (8.1c)

u(t) ≤ u(t) ≤ u(t) ∀ t ∈ [t0, t0 + tp] , (8.1d)

x(t) ≤ x(t) ≤ x(t) ∀ t ∈ [t0, t0 + tp] . (8.1e)

Here, x : R → Rnx denotes the differential state, u : R → Rnu the control
input and w0 ∈ Rnx the current initial state. For all t ∈ [t0, t0 + tp] possibly
time-varying reference values for states and controls are denoted by xref(t) ∈ Rnx ,
uref(t) ∈ Rnu , respectively, and u(t) ≤ u(t) ∈ Rnu , x(t) ≤ x(t) ∈ Rnx denote
lower and upper limits on control inputs and states, respectively. The right-hand
side function f defining a system of ordinary differential equations (ODEs) can be
nonlinear in both states and controls, while only least-squares tracking objectives
are currently supported (with ‖·‖M denoting the Euclidean norm weighted by a
symmetric, positive semi-definite matrix M).

Note that the ACADO Code Generation tool currently does not support the solution
of time-optimal NMPC problems. However, generating algorithms as described in
Subsection 7.2.3 is possible, though computing exact second derivatives would
require some extra programming effort.

8.2.2 Integration and Sensitivity Generation

As the real-time iteration algorithm is based on a shooting discretisation of the op-
timal control problem (8.1), integrating the ODE system and computing first-order
derivatives with respect to the initial value(s) and the parameterised control inputs
are a main computational step. The code exported by the ACADO Code Generation

tool computes these first-order derivatives (or sensitivities) by means of the
variational differential equation:

Let an initial value problem of the form

x(ti) = si , (8.2a)

ẋ(t) = f
(
x(t), qi

)
∀ t ∈ [ti, ti+1] , (8.2b)



AUTO-GENERATED REAL-TIME ITERATION ALGORITHMS 145

Listing 8.1: Slightly adapted variant of Listing 7.2 for exporting a tailored real-
time iteration algorithm using the ACADO Code Generation tool.

int main ( ){
// . . .

// DEFINE CSTR MODEL:
// −−−−−−−−−−−−−−−−−−
D i f f e r e n t i a l E q u a t i o n f ;

D i f f e r e n t i a l S t a t e cA , cB , theta , thetaK ;
Control u ( 2 ) ;
I n t e r m e d i a te S t a te k1 , k2 , k3 ;

k1 = k10 ∗ exp ( E1/(273.15+ th e ta ) ) ;
k2 = k20 ∗ exp ( E2/(273.15+ th e ta ) ) ;
k3 = k30 ∗ exp ( E3/(273.15+ th e ta ) ) ;

f << dot (cA) == u ( 0 ) ∗ ( cA0−cA) − k1∗cA − k3∗cA∗cA ;
f << dot (cB) == − u (0)∗ cB + k1∗cA − k2∗cB ;
f << dot ( th e ta ) == u ( 0 ) ∗ ( theta0−th e ta )

−(1/( rho∗Cp ) ) ∗ ( k1∗cA∗H1 + k2∗cB∗H2 + k3∗cA∗cA∗H3)
+(kw∗AR/( rho ∗Cp∗VR) ) ∗ ( thetaK −th e ta ) ;

f << dot ( thetaK ) == (1/(mK∗CPK) ) ∗ ( u ( 1 ) + kw∗AR∗( theta−thetaK ) ) ;

// DEFINE WEIGHTING MATRICES:
// −−−−−−−−−−−−−−−−−−−−−−−−−−
Matrix Q = eye ( 4 ) ;
Matrix R = eye ( 2 ) ;
// . . .

// DEFINE AN OPTIMAL CONTROL PROBLEM:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const double t S t a r t = 0 . 0 ;
const double tEnd = 1 5 0 0 . 0 ;
const int n I n t e r v a l s = 2 0 ;

OCP ocp ( tS tart , tEnd , n I n t e r v a l s ) ;

ocp . minimizeLSQ( Q, R ) ;

ocp . subjectTo ( f ) ;
ocp . subjectTo ( 3 . 0 <= u ( 0 ) <= 35. 0 ) ;
ocp . subjectTo ( −9000.0 <= u ( 1 ) <= 0 . 0 ) ;

// SETUP MPC CODE EXPORT AND GENERATE THE CODE:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPCexport mpc( ocp ) ;

mpc . s e t ( DISCRETIZATION TYPE, SINGLE SHOOTING ) ;
mpc . s e t ( HESSIAN APPROXIMATION, GAUSS NEWTON ) ;
mpc . s e t ( INTEGRATOR TYPE, INT RK4 ) ;
mpc . s e t ( NUM INTEGRATOR STEPS, 40 ) ;
mpc . s e t ( QP SOLVER, QP QPOASES ) ;
mpc . s e t ( HOTSTART QP, NO ) ;
mpc . s e t ( GENERATE TEST FILE, YES ) ;
mpc . s e t ( GENERATE MAKE FILE, YES ) ;

mpc . exportCode ( ” c s t r e x p o r t ” ) ;

return 0 ;
}



146 CODE GENERATION FOR NONLINEAR MPC

with si ∈ Rnx , qi ∈ Rnu and f : Rnx × Rnu → Rnx , be given and let us assume
that a unique solution exists. Then, under mild regularity conditions, the following
matrix-valued initial value problems

Gs(ti) = Inx , (8.3a)

Ġs(t) = ∇xf
(
x(t), qi

)
′ Gs ∀ t ∈ [ti, ti+1] (8.3b)

and

Gq(ti) = 0 , (8.4a)

Ġq(t) = ∇xf
(
x(t), qi

)
′ Gq +∇qi

f
(
x(t), qi

)
′ ∀ t ∈ [ti, ti+1] (8.4b)

also have unique solutions [52], which satisfy:

Gs(ti+1) =
∂x

∂si
(ti+1) , Gq(ti+1) =

∂x

∂qi
(ti+1) . (8.5)

Thus, first-order sensitivities can be obtained by integrating these additional
nx × nx ODEs (8.3) and nu × nx ODEs (8.4).

The ACADO Code Generation tool generates an optimised C function for evaluating
the original ODE system as well as the corresponding variational differential
equations (8.3) and (8.4). The required gradients are calculated and symbol-
ically simplified beforehand using the automatic differentiation features of the
ACADO Toolkit.

In a second step, a tailored explicit Runge-Kutta integrator is generated for
integrating the resulting augmented ODE system. In order to guarantee a
deterministic runtime of the online integrator, the ACADO Code Generation tool
only supports the choice of fixed step-sizes. However, this requires a careful tuning
of these step-sizes in offline simulations in order to obtain the desired integration
accuracy. Moreover, explicit Runge-Kutta integrators are not suited for integrating
stiff ODE systems [121]. Consequently, only nonstiff ODE systems can be handled
by the current implementation of the ACADO Code Generation tool.

From a computational point of view, Runge-Kutta integrators whose Butcher
tableau contains many zero entries are preferable. For example, exploiting the
four zero-entries in the Butcher tableau of order 4 (see Figure 8.1) reduces the
computational load of each integrator step by about one third. At the same
time, a fourth order Runge-Kutta integrator usually leads to sufficient integration
accuracy with a relatively small number of integrator steps. Thus, it is used as
default integrator.



AUTO-GENERATED REAL-TIME ITERATION ALGORITHMS 147

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Figure 8.1: Butcher tableau for an explicit Runge-Kutta integrator of order four
for fixed step-sizes.

8.2.3 Solving the Linearised Subproblem

The ACADO Code Generation tool automatically generates source code which
implements a Gauss-Newton real-time iteration algorithm based on a single or
multiple shooting discretisation. For solving the linearised subproblem, a state-
elimination approach in combination with a dense QP solver has been chosen (see
Subsection 6.3.1). This choice was mainly made because both available online
QP solvers, that are suited for embedded applications, are dense: the QP solvers
generated by CVXGEN as well as an embedded variant of qpOASES. Nevertheless,
the presented ideas for auto-generating real-time iteration algorithms could also
be combined with a sparse QP solver for solving the linearised subproblem. This
would lead to even more efficient code in case the prediction horizon is long (see
also the discussion in Subsection 2.1.4).

In order to obtain the dense QP (7.14), a condensing routine is generated that
performs the required matrix-vector and matrix-matrix operations. It turns out
that auto-generating these operations can make them significantly faster than
generic implementation. This is due to the fact that all dimensions can be hard-
coded which avoids dynamic memory allocation. Moreover, (inner) multiplication-
loops can be unrolled leading to linear code without any conditional statements.
Finally, certain operations can be made more efficient by hard-coding known
numerical values or sparsity patterns (e.g. in the case of constant diagonal
weighting matrices in the objective function).

For solving the resulting small-scale, dense and convex QP, the ACADO Code Gener-

ation tool interfaces two QP solvers based on different algorithmic strategies:

1. The first one is a primal-dual interior-point solver as auto-generated
by the software CVXGEN [169]. The exported algorithm is implemented
in highly efficient plain C code that only makes use of static memory.
Moreover, interior-point algorithms exhibit the advantage of relatively
constant calculation times for each occurring QP [40], which is particularly
desirable in embedded applications.



148 CODE GENERATION FOR NONLINEAR MPC

2. Active-set algorithms form a second class of suitable QP solvers, thus also
the open-source package qpOASES as described in Chapter 4 is interfaced.
Following the guidelines given in Subsection 5.1.2, an embedded variant
of qpOASES has been interfaced to the ACADO Code Generation. It uses
hard-coded QP dimensions and allocates static memory only. Moreover, it
automatically uses the more efficient solution variant for box-constrained
QPs in case the MPC formulation does not comprise state bounds.
Calculation times of active-set solvers strongly depend on the number
of required active-set changes. But as each active-set iteration is much
faster than an interior-point iteration, active-set solvers can significantly
outperform IP methods for specific applications if dedicated hot-starting
procedures turn out to work well.

8.2.4 The Auto-Generated Code

Once an MPC problem has been formulated, as illustrated in Listing 8.1, it can
be passed to the MPCexport class of the ACADO Code Generation tool2. This class
will generate optimised C code taking into account a couple of user-defined options
(or default values).

The source code generated by the ACADO Code Generation tool is fully based
on hard-coded dimensions and uses static global memory only. Thus, there
are no malloc/free or new/delete statements, which ensures that we cannot
possibly encounter any segmentation faults or out-of-memory errors while running
the algorithm on embedded controller hardware. It also avoids loops whenever
reasonable in order to ensure maximum efficiency. Moreover, except for the QP
solver, the generated code does not contain any conditional statements. Besides
the increased efficiency, this guarantees that the program cannot run into a part
of code which has accidentally never been tested.

In order to illustrate how the exported code looks like, Listing 8.2 shows a snap-shot
of an automatically generated initial value embedding step in plain C code. One
might still be able to guess that this piece of code implements a hard-coded matrix-
vector multiplication for a system with four states. However, auto-generated code
is usually hard to read by a human as it is not designed to be easily readable but
to be efficient and reliable. Of course, this comes at the price that debugging the
exported code becomes very difficult and has to be done at the level of the code
exporting functions instead.

2This class provides a user-interface and is thus derived from the UserInteraction class (see
Figure 7.2). It organises the code export relying on the code generation functionality of lower-
level classes.



AUTO-GENERATED REAL-TIME ITERATION ALGORITHMS 149

Listing 8.2: A snap-shot of automatically generated code: hard to read but
performing efficiently (taken from [129]).

void i n i t i a l Val u e E mbed di ng ( ){
params . g [ 0 ] = acadoWorkspace . g [ 4 ] +
acadoWorkspace .H[ 4 ] ∗ acadoWorkspace . deltaY [ 0 ] +
acadoWorkspace .H[ 1 8 ] ∗ acadoWorkspace . deltaY [ 1 ] +
acadoWorkspace .H[ 3 2 ] ∗ acadoWorkspace . deltaY [ 2 ] +
acadoWorkspace .H[ 4 6 ] ∗ acadoWorkspace . deltaY [ 3 ] ;
params . g [ 1 ] = acadoWorkspace . g [ 5 ] +
acadoWorkspace .H[ 5 ] ∗ acadoWorkspace . deltaY [ 0 ] +
/∗ . . . ∗/

The ACADO Code Generation tool can export the following files:

• Source and header files containing the augmented ODE system, the fixed-step
integrator, the condensing routine, the Gauss-Newton real-time iteration
algorithm based on a shooting method as well as an interface to the specified
online QP solver;

• a sample main function for testing the exported code;

• a Makefile for facilitating compilation of the exported code;

• a tailored Simulink interface for compiling the exported code into a C MEX
S-function.

Moreover, the ACADO Code Generation tool offers an option to export code using
single precision arithmetic and also the embedded variant of qpOASES can run
in single precision. This can be advantageous for at least two reasons: First,
certain hardware platforms simply do not support double precision arithmetic or
need to emulate it in software, which can increase computation times significantly.
Second, many microprocessors can perform considerably faster in single precision
arithmetic; speed-ups of up to a factor of two on Intel’s Pentium IV or even
up to a factor of ten on IBM’s Cell Broad Engine processor have been reported
in [154]. However, the use of single precision arithmetic limits the applicability of
(exported) optimisation code to more well-conditioned problem formulations, also
because round-off errors become more critical.

The numerical examples presented in Subsection 8.3 actually show that code
exported in single precision executes faster than its double precision counterpart.
Thus, the possibility to export the NMPC algorithm in different floating point
representations gives the user some freedom to trade-off solution accuracy and
runtime complexity.



150 CODE GENERATION FOR NONLINEAR MPC

8.3 Performance of the Generated Code

We illustrate the performance of the auto-generated code with a couple of examples
and discuss briefly how its computational complexity scales with changing problem
dimensions. All simulations have been performed on a standard PC (Intel Core 2
Duo P9700) having a 2.8 GHz dual-core processor and 4 GB RAM.

8.3.1 Start-Up of a CSTR (Revisited)

First of all, we apply the ACADO Code Generation tool to export optimised C

code for controlling the start-up of a continuous stirred tank reactor (CSTR)
model. We use the same dynamic model and MPC scenario as described in
Subsection 7.3.1; the corresponding symbolic formulation for exporting the tailored
real-time iteration algorithm is given in Listing 8.1. We use 40 integrator steps
of fixed length—which turns out to provide sufficient integration accuracy—and
employ the embedded variant of qpOASES as online QP solver.

As the resulting control performance is very similar to the one depicted in
Figure 7.6, we only discuss the computational performance as summarised in
Table 8.1. When comparing these figures with the ones given in Table 7.1,
we can see that one complete real-time iteration of the auto-generated NMPC
algorithm only took about 620 microseconds, thus being about 24 times faster
than the generic implementation of the ACADO Toolkit. Employing single precision
arithmetic as discussed in Subsection 8.2.4 would further reduce the runtime to
about 550 microseconds. A significant speed-up can be observed for all algorithmic
components. In particular, the auto-generated RK integrator with fixed step-size
performs more than 40 times faster than its generic counterpart with adaptive
step-size control. Also the condensing routine (about 14 times faster) and
qpOASES gain from hard-coding problem dimensions and using static memory only.
The embedded variant of qpOASES also performs faster because, unlike in the
generic implementation of the ACADO Toolkit, the special solution variant for box-
constrained QPs is automatically employed.

Note that the reported runtimes for qpOASES correspond to six active-set changes;
each additional active-set change would require an extra runtime of about
15 microseconds. Moreover, Table 8.1 indicates that eliminating the states from
the QP took a big share of the computational load of each real-time iteration. This
is because the chosen control horizon of 20 intervals is already quite long compared
to the state and control dimensions. Thus, real-time iterations based on a sparse
QP solution could probably be made even faster.



PERFORMANCE OF THE GENERATED CODE 151

CPU time %
Integration and sensitivity generation 0.24 ms 38 %
Condensing 0.22 ms 35 %
QP solution (with qpOASES)3 0.15 ms 25 %
Remaining operations 0.01 ms 2 %
One complete real-time iteration 0.62 ms 100 %

Table 8.1: Worst-case runtime for controlling the CSTR start-up when performing
Gauss-Newton real-time iterations based on auto-generated code.

Based on the presented CSTR model, results of a nominal MPC simulation
involving several set-point changes have been reported in [129]. Therein, a modified
problem formulation comprising only 10 control intervals has been used and only
20 integrator steps were performed along the prediction horizon. Using the same
PC hardware as our simulations, the worst-case runtime per real-time iteration
reduced to about 175 microseconds.

In order to illustrate that the ACADO Code Generation tool can also export code
for MPC problem formulations comprising state constraints, the MPC scenario
in [129] also introduced lower bounds on ϑ and ϑK . Moreover, one of the set-
points were chosen infeasible with respect to these state constraints. This led to
many active constraints causing qpOASES to perform up to 21 active-set changes
in order to find the optimal solution to the dense QP. Still the worst-case runtime
per real-time iteration increased only moderately to about 365 microseconds.

8.3.2 Real-Time Control of a Kite Carousel Model

A second example for illustrating the computational performance of auto-
generated real-time iteration algorithms has been given in [81]. Therein, the
ACADO Code Generation tool has been applied to a simplified model of a kite
carousel, which will form the basis for future experiments at a real-world prototype
(see Figure 8.2(a)). We briefly summarise the results and refer to [81] for all details.

The setup to be controlled aims at using kites for wind power generation as
previously motivated by [164]. The kite, anchored to a ground-based generator,
delivers a high force on the tether while it is being unrolled. This drives the
generator to produce electricity. A kite carousel prototype has been built at
K.U. Leuven in order to test control systems for kites. It consists of a rotating
device driving an aeroplane (instead of a kite) which is attached to one of its
arms (see Figure 8.2(b)). As the whole carousel construction exhibits nonlinear

3In Subsection 4.5.2 also the runtimes for CVXGEN are given.



152 CODE GENERATION FOR NONLINEAR MPC

(a) Experimental setup.

Carousel

R

(b) Sketch of the carousel model.

Figure 8.2: Picture and sketch of the prototype kite carousel at K.U. Leuven (both
taken from [81]).

dynamics while the aeroplane (or kite) is moving relatively fast along its orbits,
controlling the system reliably is challenging.

The kite carousel is described by a simplified, but still quite involved nonlinear
ODE model comprising four differential states (the spherical coordinates ϕ and ϑ
of the plane and the associated angular velocities ϕ̇ and ϑ̇ and two control inputs
effecting pitch and roll of the plane [81]:

ϑ̈ =
1

r

[
RΩ2 cos(ϑ) cos(ϕ) + r(Ω + ϕ̇)2 sin(ϑ) cos(ϑ) + g sin(ϑ) +

F aer
ϑ

m

]
, (8.6a)

ϕ̈ =
1

r sin(ϑ)

[
−2r(Ω + ϕ̇)ϑ̇ cos(ϑ)−RΩ2 sin(φ) +

F aer
ϕ

m

]
(8.6b)

where g is the gravitational constant, R the length of the carousel arm, which
rotates with a constant angular velocity Ω in a horizontal plane. Moreover, the
aerodynamic forces denoted by F aer are modelled in the form

F aer =
ρA‖we‖2

2
ψ(x, u) , (8.7)

with ρ being the density of the air, A the wing area, we the effective wind at the
plane in local coordinates, and ψ : R4×R2 → R2 a function depending nonlinearly
on the states and controls. The effective wind can be written as

we =




ϑ̇r +RΩ cos(ϑ) sin(ϕ)
r(Ω + ϕ̇) sin(ϑ) +RΩ cos(ϕ)

RΩ sin(ϑ) sin(ϕ)


 . (8.8)



PERFORMANCE OF THE GENERATED CODE 153

Motivated by the fact that the aerodynamic force F aer is mainly influenced by
the sum of a lift component, which is used to pull the plane in forward direction,
and a drag component, which breaks the plane in the opposite direction, ψ is
approximated by

ψ (x, u) ≈

(
−CLu1 − bϑ̇

−CD(1 + α1u2)− CL(1 + α2u2)ϕ

)
, (8.9)

with CL and CD denoting the nominal lift and drag coefficient, b a roll stabilisation
coefficient, and α1 and α2 the relative influence of the pitch control u2 on the
plane’s lift-over-drag efficiency. The other control variable u1, is assumed to adjust
the roll of the plane.

For testing the closed-loop behaviour of the auto-generated Gauss-Newton real-
time iteration algorithm, we aim at tracking a given steady-state reference while
an unknown disturbance occurs. For doing so, an MPC problem comprising a
control horizon of 2π seconds (which amounts to the time the carousel arm needs
to complete one full turn) divided into 10 equidistant control intervals is formulated.
Moreover, it formulates upper and lower limits on both control inputs as well as a
tracking objective function comprising a terminal penalty weight.

Figure 8.3 shows the closed-loop results simulating the following MPC scenario
with a sampling time of 50 milliseconds: We start at the reference position and no
disturbance occurs during the first 2π seconds. At the time 2π seconds an external
wind gust has been simulated, which is switched off again after 1 second. For the
chosen model parameters (see [81]), this wind gust of 1.5 m

s is large enough to cause
a crash of the kite if it would fly open-loop.

Using a standard PC with a 2.8 GHz processor and 4 GB RAM, performing
one real-time iteration for the kite carousel formulation never took more than
0.76 milliseconds and was sufficient to track the desired set points. Table 8.2
summarises the worst-case runtimes of all algorithmic components for a complete
real-time iteration. Employing single precision arithmetic would further reduce the
runtime to about 0.65 milliseconds. Note that the computation times obtained by
employing the auto-generated NMPC algorithm are orders of magnitude faster
than the ones reported in [133]. Therein, one real-time iteration took about
300 milliseconds using an only slightly more complicated ODE model.

The major share of the computation was spent within the auto-generated Runge-
Kutta integrator (using a fixed number of 30 steps). This is due to the lengthy
mathematical expressions (8.6)–(8.9) required to formulate the nonlinear ODE
model. The reported QP runtimes obtained with the embedded variant of qpOASES

correspond to four active-set changes as required when warm-starting the QP;
cold-started QP solution would have required up to 14 iterations taking about
0.1 milliseconds.



154 CODE GENERATION FOR NONLINEAR MPC

0 5 10 15 20 25 30 35
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time [s]

ph
i [

ra
d]

(a) Angular position ϕ.

0 5 10 15 20 25 30 35
0.8

1

1.2

1.4

1.6

1.8

2

2.2

time [s]

th
et

a 
[r

ad
]

(b) Angular position ϑ.

0 5 10 15 20 25 30 35

18

18.5

19

19.5

20

20.5

21

time [s]

ro
ll 

co
nt

ro
l

(c) Roll control u1.

0 5 10 15 20 25 30 35
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

pi
tc

h 
co

nt
ro

l

(d) Pitch control u2.

Figure 8.3: Simulated states and optimised control inputs of the kite carousel
(solid lines) together with their respective reference values (dotted lines); similar
to [81] but with a larger wind disturbance of 1.5 m

s and corrected subfigure titles.

CPU time %
Integration and sensitivity generation 0.59 ms 78 %
Condensing 0.09 ms 12 %
QP solution (with qpOASES)4 0.04 ms 5 %
Remaining operations 0.04 ms 5 %
One complete real-time iteration 0.76 ms 100 %

Table 8.2: Worst-case runtime of the auto-generated real-time iteration algorithm
applied to the kite carousel model (with QP warm-starts).

8.3.3 Scalability

The previous examples show that auto-generated code can be executed very fast
for small-scale MPC problem formulations. Thus, the question naturally arises
how its performance scales with the problem dimensions, namely the number of

4In Subsection 4.5.2 also the runtimes for CVXGEN are given.



PERFORMANCE OF THE GENERATED CODE 155

states nx, the number of control inputs nu and the length of the prediction/control
horizon np.

Integration and sensitivity generation requires to perform a fixed number of
evaluations of the augmented ODE system. Thus, its computational effort grows
quadratically in nx and linearly in nu. The effort also grows linearly in np, if we
make the reasonable assumption that the number of integrator steps is proportional
to the horizon length. State-elimination as implemented in the condensing routine
has cubic complexity in nx and quadratic in nu and np, respectively. The effort
for solving the resulting dense QP grows quadratically to cubically in nu and np

and does not depend on the number of states. All remaining operations require at
most O(n2

x + n2
u + np) operations.

These considerations show that code size and execution time will increase
significantly when the number of states becomes larger. The quadratic to cubic
growth in the number of control inputs and the horizon length could be avoided
by directly solving the sparse QP subproblem, instead of eliminating the states.
However, for moderate problem dimensions—say, nx ≤ 10, 1 ≤ nu ≤

nx

2 ,
and np ≤ 5nx

nu
—the NMPC algorithms as currently auto-generated by the

ACADO Code Generation tool should be very efficient.





Chapter 9

Conclusions

This last chapter concludes both parts of this thesis and discusses possible
directions for future research.

9.1 Linear MPC

9.1.1 Summary

Linear MPC has been proven to be a very useful feedback control strategy within
many practical applications during the last decades, in particular in the process
industry. Thus, researchers and practitioners keep on aiming at extending its
scope to new application areas or to processes with more challenging time-scales.
Linear MPC requires to solve a sequence of optimal control problems that can be
expressed as convex quadratic programs. These QPs have a common mathematical
structure for a given problem formulation, namely their gradients and constraint
vectors depend parametrically on the current system state. When applying linear
MPC to processes that ask for high sampling rates, this specific structure often
needs to be exploited for solving such QPs in real-time.

The online active set strategy is a dedicated QP algorithm that has been developed
to exploit this parametric dependency for speeding-up computations. It allows for
efficient hot-starting of the QP solution procedure based on solution information
of the previous problem (including matrix factorisations). Moreover, it allows for
a transparent interpretation of intermediate iterates in case the QP solution needs
to be stopped prematurely. Chapter 3 reviewed the main ideas of the online active

157



158 CONCLUSIONS

set strategy and presented novel extensions for initialising the solution procedure
and treating QPs with semi-definite Hessian matrices.

Chapter 4 presented the software package qpOASES, an efficient and reliable open-
source implementation of the online active set strategy. It is written as self-
contained C++ code and implements a number of tailored solution variants for
special QP formulations. Moreover, it offers user-friendly interfaces to third-party
software packages like Matlab and Simulink; the latter also facilitates using the
software on dSPACE and xPC hardware. qpOASES has been successfully used
in a number of academic and industrial real-world MPC applications, sometimes
outperforming general-purpose QP solvers significantly. As it is based on dense
linear algebra routines, qpOASES is most suited for small- to medium-scale MPC
formulations with control horizons of moderate length.

Chapter 5 discussed two industrial case studies to which qpOASES has been
successfully applied: The first one, MPC-based emission control of integral gas
engines, required to solve small-scale QPs in a small fraction of the sampling
time of 100 milliseconds on an embedded PowerPC (whose computational speed is
much lower than that of a standard PC). Based on experience gathered with this
and other embedded applications, a couple of programming guidelines for writing
embedded optimisation software were given. Also a modified MPC formulation
based on an asymmetric cost function has been proposed to increase control
performance for processes that can be suitably described by Wiener models.
Though this is only a minor theoretical contribution, it can be of significant
practical relevance for certain processes, like the described integral gas engines.
The second case study outlines several existing strategies to handle infeasible MPC
problems; the focus lies on MPC problems as arising in the process industry, where
prioritised constraint satisfaction is important. As infeasibility handling is a crucial
ingredient of basically all practical MPC schemes, a novel method based on the
special properties of the online active set strategy has been developed. It keeps
computational overhead small as it introduces slack variables only if needed and
weights these slacks in the objective function adaptively.

9.1.2 Directions for Future Research

When discussing possible directions of future research, one should be aware that
many different algorithms for efficiently solving linear MPC problems have been
proposed during the last decades. Most of them focus on a certain sub-class
of problems with special properties. For example, explicit MPC methods have
turned out to be extremely efficient but limited to MPC formulations comprising
not more than a couple of states or control inputs. Interior-point methods offer
the great advantage of relatively constant and predictable computational load
but might easily be outperformed by active-set methods if hot-starting works



NONLINEAR MPC 159

well for a specific application. Fast gradient methods seem to offer practical
runtime guarantees but their efficient use is currently limited to MPC formulations
without state constraints. Structure-exploiting linear algebra is usually tailored to
problems with a long or a short prediction horizon, respectively. By exploiting the
special rank structure of the QP matrices, it might be possible to further speed-up
the QP solution in case of long prediction horizons.

Thus, there already exist suitable algorithms for many possible real-world
applications of linear MPC and often only a reliable and efficient implementation
of them is missing. Future research should further investigate the limitations
of each respective approach and possible combinations of them. This can lead
to new algorithms that find better trade-offs between practical aspects such as
solution speed, solution accuracy, runtime/stability guarantees, implementation
effort, flexibility of the implementation and others. All these aspects are influenced
by the controller hardware used for running the MPC algorithm. For example,
multi-core architectures or graphics processing units (GPUs) ask for algorithms
that can be easily parallelised to obtain high efficiency. Therefore, there is need
for adapting existing algorithms to match these additional requirements imposed
by the controller hardware. Moreover, parallelisation might also be the most
promising way for further significant reduction of the computation time, as most
traditional approaches for solving QPs seem to have been pushed close to their
efficiency limits with respect to exploiting the MPC problem structure.

Besides these computational issues, the question of how to address infeasible MPC
problems remains an important practical question. Usually one of the mentioned
techniques to relax the resulting infeasible QPs is employed. However, from a
system theoretic viewpoint, it does not seem to be clear at all how these methods
need to be tuned in order to ensure an acceptable and stable system behaviour.
As the possibility to directly impose constraints is one of the main advantages of
MPC, it is surprising that this issue has been mostly neglected in literature (except
for several ad-hoc approaches).

9.2 Nonlinear MPC

9.2.1 Summary

Though nonlinear MPC theory and algorithms are still in a less mature state than
their linear counterparts, they are being applied more frequently in practice. This
is often done by using extensions of existing linear MPC schemes. In most cases
only nonlinear system dynamics are incorporated—allowing for more accurate
models of the controlled process—but the remaining constraints are linear and
a convex quadratic (tracking) objective function is used. Thus, in the simplest



160 CONCLUSIONS

case, one might simply linearise the ODE system at each sampling instant to yield
a time-varying linear MPC problem that can be solved reliably with techniques
mentioned in the first part of this thesis. Chapter 6 surveyed several direct
NMPC schemes that extend this basic idea to yield algorithms that find more
accurate approximate solutions to the nonlinear optimisation problem or enjoy
better convergence properties. It also addressed a number of numerical issues—
such as derivative computation, sparsity exploitation or online initialisations—that
are important to yield efficient implementations. Also ideas to reduce the feedback
delay were summarised.

Chapter 7 introduced the ACADO Toolkit, a novel open-source software package for
automatic control and dynamic optimisation. It implements efficient algorithms
for optimal control and model predictive control and also supports parameter
estimation and multi-objective optimisation. Problem formulations can make use
of an intuitive symbolic syntax, which is a key feature of the ACADO Toolkit.
This does not only increase user-friendliness but also allows for a couple
of algorithmic possibilities like automatic/symbolic differentiation, convexity
detection or structure exploitation. The ACADO Toolkit also implements two
algorithmic variants of the real-time iteration scheme: a Gauss-Newton approach
for NMPC formulations involving a tracking objective function as well as an
exact Hessian approach for tackling time-optimal formulations. Computational
performance of these algorithms, which both employ qpOASES as underlying QP
solver, has been illustrated with a small-scale benchmark example.

Based on the symbolic syntax of the ACADO Toolkit, an open-source tool for
automatically generating Gauss-Newton real-time iteration algorithms has been
presented in Chapter 8. The ACADO Code Generation tool allows the user to
export highly efficient and self-contained C code that is tailored to each respective
MPC problem formulation. Computational speed is increased by hard-coding
all problem dimensions, avoiding dynamic memory allocations, loop unrolling,
symbolic simplifications and the use of a fixed-step integrator. This can lead
to significant speed-ups compared to generic implementations as illustrated with
numerical examples. It was shown that the exported algorithms in their current
form are most suited for small-scale NMPC problems comprising non-stiff ODE
models. However, the basic ideas behind generating customised optimisation
algorithms seem to be extendible to more general problem classes.

9.2.2 Directions for Future Research

As mentioned before, most NMPC algorithms are designed for problem formu-
lations comprising a tracking objective function. However, from a practical
viewpoint, the minimisation of an arbitrary economic objective function would
often be of greater interest. An important special case of such non-tracking



NONLINEAR MPC 161

objectives are formulations that minimise the time to reach a certain process state.
Thus, future research should further develop theory and efficient algorithms for
NMPC with non-tracking objective functions.

A second remark concerns the available nonlinear MPC software. While many
mature implementations of general-purpose NLP solvers exist, there still seems
to be a lack of efficient and reliable codes for optimal control and NMPC. As
it is problem-dependent which combination of algorithmic components is most
suited, it would be highly desirable if such implementations are written in an
open and extensible form with well-defined interfaces. The development of the
ACADO Toolkit should be seen as a first step into this important direction, though
a single code will never be able to provide all desired features. In any case, there
is strong evidence that problem formulations based on symbolic syntax offer many
important advantages, in particular regarding user-friendliness and automated
structure exploitation.

Code generation seems to be a promising technique for linear and nonlinear
MPC applications, in particular for applications on embedded hardware. First
results for small-scale problem formulations are very encouraging; nevertheless,
this approach still has to prove its usefulness for larger-scale problems. In case
of longer prediction horizons, auto-generating or coupling an embedded solver for
sparse QPs will probably provide better results. Moreover, future research should
further investigate possibilities to optimise the exported code for a given processor
and cache architecture. Furthermore, it is currently not clear which parts of the
code optimisation can be reasonably done by high-level code generation tools and
which parts should rather be left to the compiler. Finally, one should explore
whether it might make sense to auto-generate only certain parts of an optimisation
algorithm and to leave the remaining parts generic in order to reduce the size of
the exported code.





Bibliography

[1] HOERBIGER Holding AG. Company webpage. http://www.hoerbiger.com,
2008–2011.

[2] D. Alberer, H. Kirchsteiger, L. del Re, H.J. Ferreau, and M. Diehl. Receding
horizon optimal control of Wiener systems by application of an asymmetric
cost function. In IFAC Workshop on Control Applications of Optimisation,
Agora, Finland, 2009.

[3] J. Albersmeyer and H.G. Bock. Sensitivity generation in an adaptive BDF-
method. In Modeling, Simulation and Optimization of Complex Processes:
Proceedings of the International Conference on High Performance Scientific
Computing, March 6-10, 2006, Hanoi, Vietnam, 2008.

[4] J. Albersmeyer and H.G. Bock. Sensitivity Generation in an Adaptive BDF-
Method. In H.G. Bock, E. Kostina, X.H. Phu, and R. Rannacher, editors,
Modeling, Simulation and Optimization of Complex Processes: Proceedings
of the International Conference on High Performance Scientific Computing,
March 6-10, 2006, Hanoi, Vietnam, pages 15–24. Springer, 2008.

[5] A. Alessio and A. Bemporad. Nonlinear model predictive control, volume
384 of Lecture Notes in Control and Information Sciences, chapter A Survey
on Explicit Model Predictive Control, pages 345–369. Springer, 2009.

[6] E. Anderson, Z. Bai C., Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999.

[7] J. Ängeby, M. Huschenbett, and D. Alberer. Automotive Model Predictive
Control, volume 402 of Lecture Notes in Control and Information Sciences,
chapter MIMO Model Predictive Control for Integral Gas Engines, pages
257–272. Springer, 2010.

[8] MOSEK ApS. MOSEK webpage. http://www.mosek.com, 2011.

163



164 BIBLIOGRAPHY

[9] E. Arnold, J. Neupert, O. Sawodny, and K. Schneider. Trajectory tracking for
boom cranes based on nonlinear control and optimal trajectory generation.
In IEEE International Conference on Control Applications, pages 1444–1449,
2007.

[10] U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential–Algebraic Equations. SIAM, Philadelphia, 1998.

[11] D. Axehill. Applications of Integer Quadratic Programming in Control and
Communication. PhD thesis, Linköpping University, 2005.

[12] V. Azhmyakov and J. Raisch. Convex Control Systems and Convex Optimal
Control Problems With Constraints. IEEE Transactions on Automatic
Control, 53(4):993–998, 2008.

[13] R.A. Bartlett and L.T. Biegler. QPSchur: A Dual, Active Set, Schur
Complement Method for Large-scale and Structured Convex Quadratic
Programming Algorithm. Optimization and Engineering, 7:5–32, 2006.

[14] R.A. Bartlett, L.T. Biegler, J. Backstrom, and V. Gopal. Quadratic
programming algorithms for large-scale model predictive control. Journal
of Process Control, 12:775–795, 2002.

[15] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertaufgaben und
zur Generierung von ersten und zweiten Ableitungen mit Anwendungen
bei Optimierungsaufgaben in Chemie und Verfahrenstechnik. PhD thesis,
Universität Heidelberg, 1999.

[16] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[17] A. Bemporad and C. Filippi. Suboptimal Explicit Receding Horizon Control
via Approximate Multiparametric Quadratic Programming. Journal of
Optimization Theory and Applications, 117(1):9–38, 2003.

[18] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38:3–20, 2002.

[19] A.B. Berkelaar, K. Roos, and T. Terkaly. Recent Advances in Sensitivity
Analysis and Parametric Programming, chapter 6: The Optimal Set and
Optimal Partition Approach to Linear and Quadratic Programming. Kluwer
Publishers, Dordrecht, 1997.

[20] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and
2. Athena Scientific, Belmont, MA, 1995.

[21] M.J. Best. Applied Mathematics and Parallel Computing, chapter An
Algorithm for the Solution of the Parametric Quadratic Programming
Problem, pages 57–76. Physica-Verlag, Heidelberg, 1996.



BIBLIOGRAPHY 165

[22] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear
Programming. SIAM, Philadelphia, 2001.

[23] J.T. Betts. Practical Methods for Optimal control and Estimation Using
nonlinear Programming. SIAM, 2nd edition, 2010.

[24] Lorenz T. Biegler. Nonlinear Programming. MOS-SIAM Series on
Optimization. SIAM, 2010.

[25] L.T. Biegler. Solution of dynamic optimization problems by successive
quadratic programming and orthogonal collocation. Computers and
Chemical Engineering, 8:243–248, 1984.

[26] L.T. Biegler and J.B Rawlings. Optimization approaches to nonlinear
model predictive control. In W.H. Ray and Y. Arkun, editors, Proc. 4th
International Conference on Chemical Process Control - CPC IV, pages 543–
571. AIChE, CACHE, 1991.

[27] T. Binder, L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl,
T. Kronseder, W. Marquardt, J.P. Schlöder, and O.v. Stryk. Introduction to
Model Based Optimization of Chemical Processes on Moving Horizons. In
M. Grötschel, S.O. Krumke, and J. Rambau, editors, Online Optimization
of Large Scale Systems: State of the Art, pages 295–340. Springer, 2001.

[28] C.H. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR
Generating derivative codes from Fortran programs. Scientific Programming,
1:11–29, 1992.

[29] R.R. Bitmead, M. Gevers, and V. Wertz. Adaptive optimal control: the
thinking man’s GPC. Prentice Hall, Sydney, 1990.

[30] J. Björnberg and M. Diehl. Approximate robust dynamic programming and
robustly stable MPC. Automatica, 42(5):777–782, May 2006.

[31] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, and et. al. An Updated
Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math. Soft.,
28:135–151, 2002.

[32] H.H.J. Bloemen, T.J.J. Van Den Boom, and H.B. Verbruggen. Model-
based predictive control for Hammerstein-Wiener systems. Int. J. Control,
74(5):482–95, 2001.

[33] H.G. Bock. Recent advances in parameter identification techniques for ODE.
In P. Deuflhard and E. Hairer, editors, Numerical Treatment of Inverse
Problems in Differential and Integral Equations. Birkhäuser, Boston, 1983.

[34] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in
Systemen nichtlinearer Differentialgleichungen, volume 183 of Bonner
Mathematische Schriften. Universität Bonn, Bonn, 1987.



166 BIBLIOGRAPHY

[35] H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schlöder. Constrained Optimal
Feedback Control of Systems Governed by Large Differential Algebraic
Equations. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and
B. van Bloemen Waanders, editors, Real-Time and Online PDE-Constrained
Optimization, pages 3–22. SIAM, 2007.

[36] H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schlöder. Efficient
direct multiple shooting in nonlinear model predictive control. In F. Keil,
W. Mackens, H. Voß, and J. Werther, editors, Scientific Computing in
Chemical Engineering II, volume 2, pages 218–227, Berlin, 1999. Springer.

[37] H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schlöder. A direct multiple
shooting method for real-time optimization of nonlinear DAE processes. In
F. Allgöwer and A. Zheng, editors, Nonlinear Predictive Control, volume 26
of Progress in Systems Theory, pages 246–267, Basel Boston Berlin, 2000.
Birkhäuser.

[38] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of
optimal control problems. In Proceedings 9th IFAC World Congress Budapest,
pages 243–247. Pergamon Press, 1984.

[39] N. L. Boland. A dual-active-set algorithm for positive semi-definite quadratic
programming. Mathematical Programming, 78:1–27, 1997.

[40] S. Boyd and L. Vandenberghe. Convex Optimization. University Press,
Cambridge, 2004.

[41] W. Van Brempt, P. Van Overschee, T. Backx, J. Ludlage, P. Hayot,
L. Oostvogels, and S. Rahman. Grade-change control using INCA model
predictive controller: application on a dow polystyrene process model. In
Proceedings of the IEEE American Control Conference, Denver, Colorado,
pages 5411–5416, 2003.

[42] C.G. Broyden. The convergence of a class of double rank minimization
algorithms, part I and II. J. Inst. Maths. Applns., 6:76–90 and 222–231,
1970.

[43] A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Wiley, New York,
1975.

[44] C. Büskens and H. Maurer. SQP-methods for solving optimal control
problems with control and state constraints: adjoint variables, sensitivity
analysis and real-time control. Journal of Computational and Applied
Mathematics, 120:85–108, 2000.

[45] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. KNITRO: An
integrated package for nonlinear optimization. In Gianni Pillo and Massimo



BIBLIOGRAPHY 167

Roma, editors, Large Scale Nonlinear Optimization, pages 35–59. Springer
Verlag, 2006.

[46] E.F. Camacho and C. Bordons. Model Predictive Control. Springer, 2nd
edition, 2007.

[47] M. Cannon, W. Liao, and B. Kouvaritakis. Efficient mpc optimization
using pontryagin’s minimum principle. International Journal of Robust and
Nonlinear Control, 18(8):831–844, 2008.

[48] Mark Cannon. Efficient nonlinear model predictive control algorithms.
Annual Reviews in Control, 28:229–237, 2004.

[49] H. Chen. Stability and Robustness Considerations in Nonlinear Model
Predictive Control. Fortschr.-Ber. VDI Reihe 8 Nr. 674. VDI Verlag,
Düsseldorf, 1997.

[50] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability. Automatica, 34(10):1205–1218,
1998.

[51] H. Chen, A. Kremling, and F. Allgöwer. Nonlinear predictive control of
a benchmark CSTR. In Proc. 3rd European Control Conference ECC’95,
pages 3247–3252, Rome, 1995.

[52] E.A. Coddington and N. Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1955.

[53] IBM Corp. IBM ILOG CPLEX V12.1, User’s Manual for CPLEX, 2009.

[54] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[55] T.A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.

[56] N.M.C. de Oliveira and L.T. Biegler. Constraint Handling and Stability
Properties of Model-Predictive Control. AIChE Journal, 40(7):1138–1155,
1994.

[57] B. Defraene, T. van Waterschoot, H.J. Ferreau, M. Diehl, and M. Moonen.
Perception-based clipping of audio signals. In Proceedings of the 18th
European Signal Processing Conference (EUSIPCO ’10), Aalborg, Denmark,
pages 517–521, 2010.

[58] S. Delvaux and M. Van Barel. A givens-weight representation for rank
structured matrices. SIAM J. Matrix Anal. Appl., 29:1147–1170, 2007.

[59] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large C and
C++ programs. Software: Practice and Experience, 24(6):527–542, 1994.



168 BIBLIOGRAPHY

[60] P. Deuflhard. Newton Methods for Nonlinear Problems. Springer, New York,
2004.

[61] P. Dewilde and A.-J. van der Veen. Time-varying systems and computations.
Kluwer Academic Publishers, Boston, 1998.

[62] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes,
volume 920 of Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs- und
Regelungstechnik. VDI Verlag, Düsseldorf, 2002.

[63] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme
for nonlinear optimization in optimal feedback control. SIAM Journal on
Control and Optimization, 43(5):1714–1736, 2005.

[64] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
Real-time optimization and Nonlinear Model Predictive Control of Processes
governed by differential-algebraic equations. J. Proc. Contr., 12(4):577–585,
2002.

[65] M. Diehl, H. J. Ferreau, and N. Haverbeke. Nonlinear model predictive
control, volume 384 of Lecture Notes in Control and Information Sciences,
chapter Efficient Numerical Methods for Nonlinear MPC and Moving
Horizon Estimation, pages 391–417. Springer, 2009.

[66] M. Diehl, R. Findeisen, and F. Allgöwer. A Stabilizing Real-time
Implementation of Nonlinear Model Predictive Control. In L. Biegler,
O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders,
editors, Real-Time and Online PDE-Constrained Optimization, pages 23–52.
SIAM, 2007.

[67] M. Diehl, R. Findeisen, F. Allgöwer, H.G. Bock, and J.P. Schlöder. Nominal
Stability of the Real-Time Iteration Scheme for Nonlinear Model Predictive
Control. IEE Proc.-Control Theory Appl., 152(3):296–308, 2005.

[68] M. Diehl, D.B. Leineweber, and A.A.S. Schäfer. MUSCOD-II Users’ Manual.
IWR-Preprint 2001-25, Universität Heidelberg, 2001.

[69] M. Diehl, L. Magni, and G. De Nicolao. Online NMPC of unstable periodic
systems using approximate infinite horizon closed loop costing. IFAC Annual
Reviews in Control, 28:37–45, 2004.

[70] W.S. Dorn. Duality in quadratic programming. Quarterly of Applied
Mathematics, 18:155–162, 1960.

[71] I. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15(1):1–14, 1989.

[72] John W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.



BIBLIOGRAPHY 169

[73] B.C. Fabien. Implementation of a robust sqp algorithm. Optimization
Methods & Software, 23(6):827–846, 2008.

[74] B.C. Fabien. dsoa: The implementation of a dynamic system optimization
algorithm. Optimal Control Applications and Methods, 31:231–247, 2010.

[75] H. J. Ferreau, H. G. Bock, and M. Diehl. An online active set strategy to
overcome the limitations of explicit MPC. International Journal of Robust
and Nonlinear Control, 18(8):816–830, 2008.

[76] H. J. Ferreau, P. Ortner, P. Langthaler, L. del Re, and M. Diehl. Predictive
control of a real-world diesel engine using an extended online active set
strategy. Annual Reviews in Control, 31(2):293–301, 2007.

[77] H.J. Ferreau. An Online Active Set Strategy for Fast Solution of
Parametric Quadratic Programs with Applications to Predictive Engine
Control. Master’s thesis, University of Heidelberg, 2006.

[78] H.J. Ferreau. qpOASES – An Open-Source Implementation of the Online
Active Set Strategy for Fast Model Predictive Control. In Proceedings of the
Workshop on Nonlinear Model Based Control – Software and Applications,
Loughborough, pages 29–30, 2007.

[79] H.J. Ferreau. qpOASES User’s Manual. http://www.qpOASES.org, 2007–
2011.

[80] H.J. Ferreau and B. Houska. ACADO Code Generation User’s Manual.
http://www.acadotoolkit.org, 2011.

[81] H.J. Ferreau, B. Houska, K. Geebelen, and M. Diehl. Real-time control
of a kite-carousel using an auto-generated nonlinear MPC algorithm. In
Proceedings of the IFAC World Congress, Milan, Italy, 2011.

[82] H.J. Ferreau, B. Houska, T. Kraus, and M. Diehl. Numerical Methods
for Embedded Optimisation and their Implementation within the ACADO
Toolkit. In W. Mitkowski R. Tadeusiewicz, A. Ligeza and M. Szymkat,
editors, 7th Conference - Computer Methods and Systems (CMS’09),
Krakow, Poland, November 2009. Oprogramowanie Naukowo-Techniczne.

[83] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES:
A parametric active set strategy for quadratic programming. ACM
Transactions on Mathematical Software, 2011 (to be submitted).

[84] A.V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear
programming. Academic Press, New York, 1983.

[85] R. Findeisen and F. Allgöwer. Computational Delay in Nonlinear Model
Predictive Control. Proc. Int. Symp. Adv. Control of Chemical Processes,
ADCHEM, 2003.



170 BIBLIOGRAPHY

[86] R. Fletcher. A new approach to variable metric algorithms. Computer J.,
13:317–322, 1970.

[87] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 2nd
edition, 1987.

[88] R. Fletcher. Resolving degeneracy in quadratic programming. Annals of
Operations Research, 46–47:307–334, 1993.

[89] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:95–110, 1956.

[90] R. Franke and E. Arnold. HQP Webpage. http://hqp.sourceforge.net, 2008.

[91] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback control of
dynamic systems. Prentice Hall, 6 edition, 2009.

[92] M.P. Friedlander and P. Tseng. Exact regularization of convex programs.
SIAM Journal on Optimization, 18:1326–1350, 2007.

[93] L. Di Gaspero. QuadProg++ homepage. http://quadprog.sourceforge.net,
2010.

[94] E.M. Gertz and S.J. Wright. Object-Oriented Software for Quadratic
Programming. ACM Transactions on Mathematical Software, 29(1):58–81,
2003.

[95] T. Geyer, G.A. Beccuti, G. Papafotiou, and M. Morari. Model predictive
direct torque control of permanent magnet synchronous motors. In
Proceedings of the IEEE Energy Conversion Congress and Exposition
(ECCE), Atlanta, GA, 2010.

[96] P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL
5.0: A fortran package for nonlinear programming. Technical report sol 86-6,
Stanford University, 2001.

[97] P.E. Gill, N.I.M. Gould, W. Murray, M.A. Saunders, and M.H. Wright.
A Weighted Gram-Schmidt Method for Convex Quadratic Programming.
Mathematical Programming, 30:176–195, 1984.

[98] P.E. Gill and W. Murray. Numerically Stable Methods for Quadratic
Programming. Mathematical Programming, 14:349–372, 1978.

[99] P.E. Gill, W. Murray, and M.A. Saunders. User’s Guide For QPOPT 1.0:
A Fortran Package For Quadratic Programming, 1995.

[100] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. Technical report, Numerical Analysis
Report 97-2, Department of Mathematics, University of California, San
Diego, La Jolla, CA, 1997.



BIBLIOGRAPHY 171

[101] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints. ACM Transactions on Mathematical Software, 10(3):282–298,
1984.

[102] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. A practical
anti-cycling procedure for linearly constrained optimization. Mathematical
Programming, 45:437–474, 1989.

[103] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Inertia-Controlling
Methods for General Quadratic Programming. SIAM Review, 33(1):1–36,
1991.

[104] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic
Press, London, 1999.

[105] W.J. Givens. Numerical computation of the characteristic values of a real
symmetric matrix. Technical Report 1574, Oak Ridge National Laboratory,
1954.

[106] T. Glad and H. Johnson. A method for state and control constrained linear-
quadratic control problems. In Proceedings of the 9th IFAC World Congress,
Budapest, Hungary, pages 1583–1587, 1984.

[107] D. Goldfarb. A family of variable metric methods derived by variational
means. Maths. Comp., 17:739–764, 1970.

[108] D. Goldfarb. Matrix Factorizations in Optimization of Nonlinear Functions
Subject to Linear Constraints. Mathematical Programming, 10:1–31, 1975.

[109] D. Goldfarb and A. Idnani. A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming, 27:1–33,
1983.

[110] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

[111] N.I.M. Gould, D. Orban, and P.L. Toint. GALAHAD, a library of thread-
safe Fortran 90 packages for large-scale nonlinear optimization. ACM
Transactions on Mathematical Software, 29(4):353–372, 2004.

[112] M. Grant. Disciplined Convex Programming. PhD thesis, Stanford
University, 2004.

[113] M. Grant and S. Boyd. CVX webage. http://cvxr.com/cvx, 2011.

[114] A. Griewank. On Automatic Differentiation. In Mathematical Programming:
Recent Developments and Applications. Kluwer Academic Publishers,
Dordrecht, Boston, London, 1989.



172 BIBLIOGRAPHY

[115] A. Griewank. Evaluating Derivatives, Principles and Techniques of
Algorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, 2000.

[116] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther. ADOL-
C: A Package for the Automatic Differentiation of Algorithms Written in
C/C++. Technical report, Technical University of Dresden, Institute of
Scientific Computing and Institute of Geometry, 1999. Updated version of
the paper published in ACM Trans. Math. Software 22, 1996, 131–167.

[117] A. Griewank and Ph.L. Toint. Partitioned variable metric updates for
large structured optimization problems. Numerische Mathematik, 39:119–
137, 1982.

[118] A. Griewank and A. Walther. On Constrained Optimization by Adjoint
based quasi-Newton Methods. Optimization Methods and Software, 17:869 –
889, 2002.

[119] J. Guddat, F. Guerra Vasquez, and H.T. Jongen. Parametric Optimization:
Singularities, Pathfollowing and Jumps. Teubner, Stuttgart, 1990.

[120] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I. Springer Series in Computational Mathematics. Springer,
Berlin, 2nd edition, 1993.

[121] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations II – Stiff and Differential-Algebraic Problems. Springer Series
in Computational Mathematics. Springer, Berlin, 2nd edition, 1996.

[122] S. P. Han. A Globally Convergent Method for Nonlinear Programming.
JOTA, 22:297–310, 1977.

[123] A. Helbig, O. Abel, and W. Marquardt. Model Predictive Control for On-line
Optimization of Semi-batch Reactors. In Proc. Amer. Contr. Conf., pages
1695–1699, Philadelphia, 1998.

[124] M.R. Hestenes. Calculus of variations and optimal control theory. Wiley,
New York, 1966.

[125] N.J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd
edition, 2002.

[126] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E.
Shumaker, and C.S. Woodward. SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Transactions on Mathematical
Software, 31:363–396, 2005.



BIBLIOGRAPHY 173

[127] B. Houska and H.J. Ferreau. ACADO Toolkit User’s Manual.
http://www.acadotoolkit.org, 2009–2011.

[128] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Optimization. Optimal
Control Applications and Methods, 32(3):298–312, 2011.

[129] B. Houska, H.J. Ferreau, and M. Diehl. An auto-generated real-time
iteration algorithm for nonlinear MPC in the microsecond range. Automatica,
2011 (in print).

[130] M. Hovd and R.D. Braatz. Handling state and output constraints in MPC
using time-dependent weights. In Proceedings of the American Control
Conference, Arlington, VA, 2001.

[131] S. Hovland. Soft constraints in explicit model predictive control. Master’s
thesis, Trondheim University, 2004.

[132] M. Huschenbett, D. Alberer, G. Beshouri, and M. Richter. Emission
reduction & stability improvement by predictive model based predictive
control of legacy gas engines. In Proceedings of the Gas Machinery
Conference 2007, Dallas, Texas, 2007.

[133] A. Ilzhoefer, B. Houska, and M. Diehl. Nonlinear MPC of kites under
varying wind conditions for a new class of large scale wind power generators.
International Journal of Robust and Nonlinear Control, 17(17):1590–1599,
2007.

[134] Free Software Foundation Inc. GNU Lesser General Public License.
http://www.gnu.org/copyleft/lesser.html, 2007–2011.

[135] The MathWorks Inc. Real-Time Workshop for Use with SIMULINK, User’s
Guide, 1999.

[136] T.A. Johansen and A. Grancharova. Approximate explicit constrained linear
model predictive control via orthogonal search tree. IEEE Trans. Automatic
Control, 48:810–815, 2003.

[137] C.N. Jones and M. Morari. Approximate explicit MPC using bilevel
optimization. In European Control Conference, Budapest, Hungary, 2009.

[138] C.N. Jones and M. Morari. Polytopic approximation of explicit
model predictive controllers. IEEE Transactions on Automatic Control,
55(11):2542–2553, 2010.

[139] H. Jonson. A Newton-Method for Solving Non-Linear Optimal Control
Problems with General Constraints. PhD thesis, Linköpping University,
1983.



174 BIBLIOGRAPHY

[140] J.B. Jorgensen, J.B. Rawlings, and S.B. Jorgensen. Numerical methods for
large-scale moving horizon estimation and control. In Proceedings of Int.
Symposium on Dynamics and Control Process Systems (DYCOPS), 2004.

[141] N. Karmarkar. A new polynomial time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[142] W. Karush. Minima of functions of several variables with inequalities as
side conditions. Master’s thesis, Department of Mathematics, University of
Chicago, 1939.

[143] S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback laws for
a general class of constrained discrete-time systems: Stability and moving-
horizon approximations. Journal of Optimization Theory and Applications,
57(2):265–293, 1988.

[144] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM,
1995.

[145] E.C. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive
Control. PhD thesis, University of Cambridge, UK, 2000.

[146] C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. Block-structured
quadratic programming for the direct multiple shooting method for optimal
control. Optimization Methods and Software, 26(2):239–257, 2010.

[147] C. Kirches, L. Wirsching, S. Sager, and H.G Bock. Efficient numerics for
nonlinear model predictive control. In M. Diehl, Francois F. Glineur, and
E. Jarlebring W. Michiels, editors, Recent Advances in Optimization and its
Applications in Engineering, pages 339–357. Springer, 2010.

[148] K.-U. Klatt and S. Engell. Rührkesselreaktor mit Parallel- und
Folgereaktion. In S. Engell, editor, Nichtlineare Regelung – Methoden,
Werkzeuge, Anwendungen. VDI-Berichte Nr. 1026, pages 101–108. VDI-
Verlag, Düsseldorf, 1993.

[149] V. Klee and G.J. Minty. How Good is the Simplex Algorithm? In O. Shisha,
editor, Inequalities, volume III, pages 159–175. Academic Press, New York,
1972.

[150] P. Krämer-Eis and H.G. Bock. Numerical Treatment of State and Control
Constraints in the Computation of Feedback Laws for Nonlinear Control
Problems. In P. Deuflhard et al., editor, Large Scale Scientific Computing,
pages 287–306. Birkhäuser, Basel Boston Berlin, 1987.

[151] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor,
Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, 1951. University of California Press.



BIBLIOGRAPHY 175

[152] M. Kvasnica, P. Grieder, M. Baotic, and F.J. Christophersen. Multi-
Parametric Toolbox, 2006.

[153] M. Kvasnica, I. Rauova, and F. Miroslav. Automatic code generation for
real-time implementation of model predictive control. In Proceedings of the
IEEE International Symposium on Computer-Aided Control System Design,
Yokohama, Japan, 2010.

[154] J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. Exploiting
the performance of 32 bit floating point arithmetic in obtaining 64 bit
accuracy (revisiting iterative refinement for linear systems). In Proceedings
of the ACM/IEEE SC 2006 Conference, pages 50–66, 2006.

[155] D.B. Leineweber. Efficient reduced SQP methods for the optimization
of chemical processes described by large sparse DAE models, volume 613
of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag,
Düsseldorf, 1999.

[156] D.B. Leineweber, I. Bauer, H.G. Bock, and J.P. Schlöder. An Efficient
Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic
Process Optimization. Part I: Theoretical Aspects. Computers and Chemical
Engineering, 27:157–166, 2003.

[157] D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder.
An Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale
Dynamic Process Optimization (Parts I and II). Computers and Chemical
Engineering, 27:157–174, 2003.

[158] W. Li and J. Swetits. A new algorithm for solving strictly convex quadratic
programs. SIAM Journal of Optimization, 7(3):595–619, 1997.

[159] W.C. Li and L.T. Biegler. Multistep, Newton-Type Control Strategies for
Constrained Nonlinear Processes. Chem. Eng. Res. Des., 67:562–577, 1989.

[160] W.C. Li and L.T. Biegler. Newton-Type Controllers for Constrained
Nonlinear Processes with Uncertainty. Industrial and Engineering Chemistry
Research, 29:1647–1657, 1990.

[161] L. Ljung. System identification: Theory for the User. Prentice Hall, Upper
Saddle River, N.J., 1999.

[162] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[163] F. Logist, B. Houska, M. Diehl, and J. Van Impe. Fast Pareto set generation
for nonlinear optimal control problems with multiple objectives. Structural
and Multidisciplinary Optimization, 42(4):591–603, 2010.



176 BIBLIOGRAPHY

[164] M.L. Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, July
1980.

[165] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[166] C.M. Maes. A Regularized Acitve-Set Method for Sparse Convex Quadratic
Programming. PhD thesis, Stanford University, 2010.

[167] I. Maros and C. Meszaros. A repository of convex quadratic programming
problems. Optimization Methods and Software, 11:431–449, 1999.

[168] J. Mattingley and S. Boyd. CVXGEN webage. http://cvxgen.com, 2008–
2011.

[169] J. Mattingley and S. Boyd. Convex Optimization in Signal Processing
and Communications, chapter Automatic Code Generation for Real-Time
Convex Optimization. Cambridge University Press, 2009.

[170] D. Q. Mayne and S. Rakovic. Optimal Control of Constrained
Piecewise Affine Discrete-Time Systems. Computational Optimization and
Applications, 25:167–191, 2003.

[171] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained
model predictive control: stability and optimality. Automatica, 26(6):789–
814, 2000.

[172] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[173] A. M’hamdi, A. Helbig, O. Abel, and W. Marquardt. Newton-type Receding
Horizon Control and State Estimation. In Proc. 13rd IFAC World Congress,
pages 121–126, San Francisco, 1996.

[174] M. Morari. Approximate explicit model predictive control. Talk at
International Workshop on Assessment and Future Directions of Nonlinear
Model Predictive Control, Pavia, Italy, September 2008.

[175] A. Morger. Synthesis, design and control of a tendon-driven robot platform
for vestibular stimulation during sleep. Master’s thesis, ETH Zurich, 2010.

[176] Y. Nesterov. Introductory lectures on convex optimization: a basic course,
volume 87 of Applied Optimization. Kluwer Academic Publishers, 2003.

[177] Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms in
Convex Programming. Society for Industrial Mathematics, 1994.

[178] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, 2 edition, 2006.



BIBLIOGRAPHY 177

[179] S.J. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener
Model Predictive Control (WMPC) to a pH Neutralization Experiment.
IEEE Transactions on Control Systems Technology, 7(4):437–445, 1999.

[180] T. Ohtsuka. A Continuation/GMRES Method for Fast Computation of
Nonlinear Receding Horizon Control. Automatica, 40(4):563–574, 2004.

[181] T. Ohtsuka and A. Kodama. Automatic code generation system for nonlinear
receding horizon control. Transactions of the Society of Instrument and
Control Engineers, 38(7):617–623, 2002.

[182] T. Oohori and A. Ohuchi. An efficient implementation of Karmarkar’s
algorithm for large sparse linear programs. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics,, 1988.

[183] Tomlab Optimization. PROPT: Matlab Optimal Control Software
(ODE,DAE). http://tomdyn.com, 2009–2011.

[184] P. Ortner, R. Bergmann, H.J. Ferreau, and L. del Re. Nonlinear Model
Predictive Control of a Diesel Engine Airpath. In IFAC Workshop on Control
Applications of Optimisation, Agora, Finland, 2009.

[185] C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal of Numerical Analysis, 12(4):617–629, 1975.

[186] G. Pannocchia, J.B. Rawlings, D.Q. Mayne, and W. Marquardt. On
computing solutions to the continuous time constrained linear quadratic
regulator. IEEE Transactions of Automatic Control, 55(9):2192–2198, 2010.

[187] G. Pannocchia, J.B. Rawlings, and S.J. Wright. Fast, large-scale model
predictive control by partial enumeration. Automatica, 43:852–860, 2007.

[188] G. Pannocchia, J.B. Rawlings, and S.J. Wright. Partial enumeration MPC:
Robust stability results and application to an unstable CSTR. In Proceedings
of the 9th International Symposium on Dynamics and Control of Process
Systems, Leuven, Belgium, 2010.

[189] P. Patrinos, P. Sopasakis, and H. Sarimveis. A global piecewise smooth
newton method for fast large-scale model predictive control. Technical report,
National Technical University of Athens, 2010.

[190] L.R. Petzold. Solver DASSL. http://pitagora.dm.uniba.it/∼testset/solvers/-
dassl.php, June 1991.

[191] K.J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten
Berechnung beschränkter optimaler Steuerungen. Master’s thesis, Univer-
sität Bonn, 1981.



178 BIBLIOGRAPHY

[192] L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko.
The Mathematical Theory of Optimal Processes. Wiley, Chichester, 1962.

[193] A. Potschka, C. Kirches, H.G. Bock, and J.P. Schlöder. Reliable solution of
convex quadratic programs with parametric active set methods. Technical
report, Interdisciplinary Center for Scientific Computing, Heidelberg
University, Im Neuenheimer Feld 368, 69120 Heidelberg, GERMANY,
November 2010.

[194] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization
calculations. In G.A. Watson, editor, Numerical Analysis, Dundee 1977,
volume 630 of Lecture Notes in Mathematics, Berlin, 1978. Springer.

[195] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733–764, 2003.

[196] C.V. Rao, S.J. Wright, and J.B. Rawlings. Application of Interior-Point
Methods to Model Predictive Control. Journal of Optimization Theory and
Applications, 99:723–757, 1998.

[197] G. Rauter, J. v. Zitzewitz, A. Duschau-Wicke, H. Vallery, and R. Riener.
A tendon-based parallel robot applied to motor learning in sports. In
Proceedings of the IEEE International Conference on Biomedical Robotics
and Biomechatronics 2010, Japan, 2010.

[198] J.B. Rawlings. Optimal dynamic operation of chemical processes:
Assessment of the last 20 years and current research opportunities. Talk
at K.U. Leuven, Belgium, June 2009.

[199] S. Richter, C.N. Jones, and M. Morari. Real-time input-constrained MPC
using fast gradient methods. In Proceedings of the IEEE Conference on
Decision and Control, Shanghai, China, 2009.

[200] S. Richter, S. Mariéthoz, and M. Morari. High-Speed Online MPC Based on
a Fast Gradient Method Applied to Power Converter Control. In Proceedings
of the American Control Conference, pages 4737–4743, Baltimore, MD, USA,
2010.

[201] S.M. Robinson. Perturbed Kuhn-Tucker points and rates of convergence for
a class of nonlinear programming algorithms. Mathematical Programming,
7:1–16, 1974.

[202] R.T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14:877–898, 1976.

[203] L.A. Rodriguez and A. Sideris. An active set method for constrained linear
quadratic optimal control. In American Control Conference (ACC), 2010,
pages 5197–5202, 2010.



BIBLIOGRAPHY 179

[204] A. Romanenko and L. Santos. Assessment and Future Directions of
Nonlinear Model Predictive Control, volume 358 of Lecture Notes in Control
and Information Sciences, chapter A Nonlinear Model Predictive Control
Framework as Free Software: Outlook and Progress Report, pages 229–238.
Springer, 2007.

[205] R.W.H. Sargent and G.R. Sullivan. The development of an efficient optimal
control package. In J. Stoer, editor, Proceedings of the 8th IFIP Conference
on Optimization Techniques (1977), Part 2, Heidelberg, 1978. Springer.

[206] K. Schittkowski. QLD: A FORTRAN code for quadratic programming, users
guide. Universität Bayreuth, 1986.

[207] J.P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler
Aufgaben der Parameteridentifizierung, volume 187 of Bonner Mathematis-
che Schriften. Universität Bonn, Bonn, 1988.

[208] P.O.M. Scokaert and J.B. Rawlings. Feasibility Issues in Linear Model
Predictive Control. AIChE Journal, 45(8):1649–1659, 1999.

[209] M. Seeger. Low rank updates for the cholesky decomposition. Technical
report, University of California at Berkeley, 2008.

[210] H. Seguchi and T. Ohtsuka. Nonlinear Receding Horizon Control of an
Underactuated Hovercraft. International Journal of Robust and Nonlinear
Control, 13(3–4):381–398, 2003.

[211] A. Shahzad, E.C. Kerrigan, and G.A. Constantinides. Preconditioners for
inexact interior point methods for predictive control. In American Control
Conference (ACC), 2010, pages 5714–5719, 2010.

[212] A. Shahzad, E.C. Kerrigan, and G.A. Constantinides. A warm-start interior-
point method for predictive control. Technical report, Imperial College
London, 2010.

[213] R. Shamir. Probabilistic analysis in linear programming. Statistical Science,
8(1):57–64, 1993.

[214] D.F. Shanno. Conditioning of quasi-Newton methods for function
minimization. Maths. Comp., 24:647–656, 1970.

[215] Y. Shimizu, T. Ohtsuka, and M. Diehl. A Real-Time Algorithm
for Nonlinear Receding Horizon Control Using Multiple Shooting and
Continuation/Krylov Method. International Journal of Robust and
Nonlinear Control, 19:919–936, 2009.



180 BIBLIOGRAPHY

[216] L.L. Simon, Z.K. Nagy, and K. Hungerbuehler. Nonlinear Model Predictive
Control, volume 384 of Lecture Notes in Control and Information Sciences,
chapter Swelling Constrained Control of an Industrial Batch Reactor Using
a Dedicated NMPC Environment: OptCon, pages 531–539. Springer, 2009.

[217] R.D. Skeel. Iterative refinement implies numerical stability for gaussian
elimination. Mathematics of Computation, 35(151):817–832, 1980.

[218] IEEE Computer Society. IEEE Standard 1063 for Software User
Documentation, 2001.

[219] J. Spjøtvold, E.C. Kerrigan, C.N. Jones, T.A. Johansen, and P. Tøndel.
Conjectures on an algorithm for convex parametric quadratic programs.
Technical report, Department of Engineering, University of Cambridge, 2004.

[220] M.C. Steinbach. A structured interior point SQP method for nonlinear
optimal control problems. In R. Bulirsch and D. Kraft, editors, Computation
Optimal Control, pages 213–222, Basel Boston Berlin, 1994. Birkhäuser.

[221] M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with
state and control inequality constraints. In Proceedings of the 26th IEEE
conference on decision and control, Los Angeles, pages 761–762, 1987.

[222] G. Takács and B. Rohal’-Ilkiv. MPC in active vibration control of lightly
damped structures. Control Engineering Practice, 2011 (submitted).

[223] G. Takács and B. Rohal’-Ilkiv. Predictive Vibration Control: Efficient
constrained MPC vibration control for lightly damped mechanical systems.
Springer, 2011 (in print).

[224] M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear model predictive
control via feasibility-perturbed sequential quadratic programming. Compu-
tational Optimization and Applications, 28(1):87–121, April 2004.

[225] P. Tøndel, T.A. Johansen, and A. Bemporad. An Algorithm for
Multi-Parametric Quadratic Programming and Explicit MPC Solutions.
Automatica, 39:489–497, 2003.

[226] P. Tøndel, T.A. Johansen, and A. Bemporad. Computation and
Approximation of Piecewise Affine Control Laws via Binary Search Trees.
Automatica, 39:945–950, 2003.

[227] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via
collocation and non-linear programming. International Journal on Control,
21:763–768, 1975.

[228] J. Vada, O. Slupphaug, and T.A. Johansen. Efficient infeasibility handling in
linear MPC subject to prioritised constraints. In Proceeding of the European
Control Conference, Karlsruhe, Germany, 1999.



BIBLIOGRAPHY 181

[229] J. Vada, O. Slupphaug, and T.A. Johansen. Optimal Prioritized
Infeasibility Handling in Model Predictive Control: Parametric Preemptive
Multiobjective Linear Programming Approach. Journal of Optimization
Theory and Applications, 109(2):385–413, 2001.

[230] L. Van den Broeck. Time optimal control of mechatronic systems through
embedded optimization. PhD thesis, K.U. Leuven, july 2011.

[231] L. Van den Broeck, M. Diehl, and J. Swevers. Time Optimal MPC for
mechatronic applications. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 8040–8045, Shanghai, China, 2009.

[232] L. Van den Broeck, J. Swevers, and M. Diehl. Performant design of an input
shaping prefilter via embedded optimization. In Proceedings of the 2009
American Control Conference, pages 166–171, St-Louis, USA, 2009.

[233] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix Computations and
Semiseparable Matrices I. Linear Systems. John Hopkins University Press,
Baltimore, USA, 2007.

[234] R. J. Vanderbei. LOQO: An interior point code for quadratic programming.
Optimization Methods and Software, 11:451–484, 1999.

[235] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear
Optimization with Applications in Process Engineering. PhD thesis, Carnegie
Mellon University, 2002.

[236] A. Wächter and L.T. Biegler. On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming. Mathematical Programming, 106(1):25–57, 2006.

[237] X. Wang. Resolution of Ties in Parametric Quadratic Programming.
Master’s thesis, University of Waterloo, Ontario, Canada, 2004.

[238] Y. Wang and S. Boyd. Fast model predictive control using online
optimization. IEEE Transactions on Control Systems Technology, 18(2):267–
278, 2010.

[239] Y. Wang, C.N. Jones, and J.M. Maciejowski. Efficient point location via
subdivision walking with application to explicit MPC. In European Control
Conference, Kos, Greece, 2007.

[240] T. Wiese. Constraint handling in predictive control. Bachelor thesis,
Technische Universität München, 2009.

[241] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Claredon Press, Oxford,
1965.



182 BIBLIOGRAPHY

[242] A. Wills. QPC homepage. http://sigpromu.org/quadprog, 2006–2011.

[243] A. Wills, D. Bates, A.J. Fleming, B. Ninness, and S.O. Reza Moheimani.
Model predictive control applied to constraint handling in active noise
and vibration control. IEEE Transactions on Control Systems Technology,
16(1):3–12, 2008.

[244] A.G. Wills, D. Bates, A.J. Fleming, B. Ninness, and S.O.R. Moheimani.
Application of MPC to an active structure using sampling rates up to
25kHz. 44th IEEE Conference on Decision and Control and European
Control Conference ECC’05, Seville, 2005.

[245] R.B. Wilson. A simplicial algorithm for concave programming. PhD thesis,
Harvard University, 1963.

[246] L. Wirsching. An SQP Algorithm with Inexact Derivatives for a Direct
Multiple Shooting Method for Optimal Control Problems. Master’s thesis,
University of Heidelberg, 2006.

[247] L. Wirsching, H.J. Ferreau, H.G. Bock, and M. Diehl. An Online Active
Set Strategy for Fast Adjoint Based Nonlinear Model Predictive Control. In
Preprints of the 7th Symposium on Nonlinear Control Systems (NOLCOS),
Pretoria, 2007.

[248] P. Wolfe. The simplex method for quadratic programming. Econometrica,
27:382–398, 1959.

[249] P. Wolfe. A duality theorem for non-linear programming. Quarterly of
Applied Mathematics, 19:239–244, 1961.

[250] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications,
Philadelphia, 1997.

[251] S.J. Wright. Efficient methods for structured quadratic programs. Talk
at OPTEC Workshop on Large Scale Convex Quadratic Programming –
Algorithms, Software, and Applications, Leuven, Belgium, November 2010.

[252] E.A. Yildirim and S. J. Wright. Warm-start strategies in interior-point
methods for linear programming. SIAM Journal on Optimization, 12(3):782–
810, 2002.

[253] E. Zafiriou. Robust model predictive Control of processes with hard
constraints. Computers & Chemical Engineering, 14(4–5):359–371, 1990.

[254] V. M. Zavala and L.T. Biegler. The Advanced Step NMPC Controller:
Optimality, Stability and Robustness. Automatica, 45:86–93, 2009.



BIBLIOGRAPHY 183

[255] V.M. Zavala, C.D. Laird, and L.T. Biegler. Fast solvers and rigorous models:
can both be accomodated in NMPC? In Proceedings of the IFAC Workshop
on Nonlinear Model Predictive Control for Fast Systems, Grenoble, 2006.

[256] M.N. Zeilinger, C.N. Jones, and M. Morari. Real-time suboptimal
model predictive control using a combination of explicit MPC and online
optimization. In Proceedings of the IEEE Conference on Decision and
Control, Cancun, Mexico, 2008.

[257] J. Zhao, M. Diehl, R. Longman, H.G. Bock, and J.P. Schlöder. Nonlinear
Model Predictive Control of Robots Using Real-Time Optimization. In
Proceedings of the AIAA/AAS Astrodynamics Conference, Providence, RI,
August 2004.





List of Publications

Journal Papers:

1. H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock M. Diehl. qpOASES: A
parametric active set strategy for quadratic programming. ACM Transactions
on Mathematical Software, 2011 (to be submitted).

2. B. Houska, H.J. Ferreau, M. Diehl. An Auto-Generated Real-Time Iteration
Algorithm for Nonlinear MPC in the Microsecond Range. Automatica, 2011
(in print).

3. B. Houska, H.J. Ferreau, M. Diehl. ACADO Toolkit – An Open-Source
Framework for Automatic Control and Dynamic Optimization. Optimal
Control Methods and Application, 32 (3), pp. 298–312, 2011.

4. H.J. Ferreau, H.G. Bock, M. Diehl. An online active set strategy to
overcome the limitations of explicit MPC. International Journal of Robust
and Nonlinear Control, 18 (8), pp. 816–830, 2008.

5. H.J. Ferreau, P. Ortner, P. Langthaler, L. del Re, M. Diehl. Predictive
Control of a Real-World Diesel Engine using an Extended Online Active Set
Strategy. Annual Reviews in Control, 31 (2), pp. 293–301, 2007.

Book Chapters:

1. H.J. Ferreau, B. Houska, T. Kraus, M. Diehl. Numerical Methods
for Embedded Optimisation and their Implementation within the ACADO
Toolkit. In: 7th Conference – Computer Methods and Systems (CMS’09);
R. Tadeusiewicz, A. Ligeza, W. Mitkowski, M. Szymkat (eds.), pp. 13–29,
Oprogramowanie Naukowo-Techniczne, 2009.

2. M. Diehl, H.J. Ferreau, N. Haverbeke. Efficient Numerical Methods for
Nonlinear MPC and Moving Horizon Estimation. In: Nonlinear Model

185



186 BIBLIOGRAPHY

Predictive Control; L. Magni, M.D. Raimondo, F. Allgöwer (eds.), pp. 391–
417, 2009.

Conference Papers:

1. H.J. Ferreau, B. Houska, K. Geebelen, M. Diehl. Real-Time Control
of a Kite-Carousel using an Auto-Generated Nonlinear MPC Algorithm.
Proceedings of the IFAC World Congress, Milan, Italy, 2011.

2. B. Defraene, T. van Waterschoot, H.J. Ferreau, M. Diehl, M. Moonen.
Perception-based clipping of audio signals. Proceedings of the 18th European
Signal Processing Conference, pp. 517–521, Aalborg, Denmark, 2010.

3. D. Dimitrov, P.-B. Wieber, O. Stasse, H.J Ferreau, H. Diedam. An
Optimized Linear Model Predictive Control Solver for Online Walking Motion
Generation. Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 1171–1176, Kobe, Japan, 2009.

4. D. Alberer, H. Kirchsteiger, L. del Re, H.J. Ferreau, M. Diehl. Receding
horizon optimal control of Wiener systems by application of an asymmetric
cost function. Proceedings of the IFAC Workshop on Control Applications
of Optimisation, Agora, Finland, 2009.

5. P. Ortner, R. Bergmann, H.J. Ferreau, L. del Re. Nonlinear Model Predictive
Control of a Diesel Engine Airpath. Proceedings of the IFAC Workshop on
Control Applications of Optimisation, Agora, Finland, 2009.

6. D. Dimitrov, P.-B. Wieber, H.J. Ferreau, M. Diehl. On the Implementation
of Model Predictive Control for On-line Walking Pattern Generation. Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
pp. 2685–2690, Pasadena, CA, 2008.

7. L. Wirsching, H.J. Ferreau, H.G. Bock, M. Diehl. An Online Active
Set Strategy for Fast Adjoint Based Nonlinear Model Predictive Control.
Preprints of the 7th Symposium on Nonlinear Control Systems (NOLCOS),
pp. 164–169, Pretoria, South Africa, 2007.

8. H.J. Ferreau, G. Lorini, M. Diehl. Fast Nonlinear Model Predictive Control
of Gasoline Engines. Proceedings of the IEEE International Conference on
Control Applications, pp. 2754–2759, Munich, Germany, 2006.





Arenberg Doctoral School of Science, Engineering & Technology

Faculty Engineering.

Department of Electrical Engineering

Research group SCD

Kasteelpark Arenberg 10 (bus 2446), B-3001 Leuven


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Model Predictive Control

	I Linear Model Predictive Control
	Overview of Existing Methods for Linear MPC
	Quadratic Programming
	Definitions
	Optimality Conditions
	Parametric Quadratic Programming
	Remark on State-Elimination

	Explicit Solution Methods
	Main Concept
	Approximate Methods

	Iterative Solution Methods
	Active-Set Methods
	Interior-Point Methods
	Further Iterative Approaches
	Combinations of Explicit and Iterative Methods


	Fast Linear MPC using the Online Active Set Strategy
	The Online Active Set Strategy
	Main Idea
	Real-Time Variant

	Initialisation of the Homotopy
	Initialisation Strategies
	Obtaining Good Initial Guesses

	Extension to Multiply Linearised MPC
	Regularisation Procedure for Convex QPs

	The Open-Source Implementation qpOASES
	Overview of the Software Package
	Algorithmic Description
	Features
	Software Design
	Computational Complexity

	Solution Variants for QPs with Special Properties
	Box Constraints
	Trivial Hessian Matrix
	Positive Semi-Definite Hessian Matrix
	Many Constraints
	Sparse QP Matrices
	Varying QP Matrices

	Numerical Modifications to Increase Reliability
	Dealing with Rounding Errors and Ill-Conditioning
	Dealing with Ties

	Interfaces and Applications
	Interfaces for Matlab, Octave, Scilab and YALMIP
	Running qpOASES on dSPACE and xPC Target
	Real-World Applications

	Numerical Performance
	Reliability
	Computational Efficiency


	Practical Issues and Industrial Case Studies
	Industrial Case Study I: Emission Control of Integral Gas Engines
	MPC of Integral Gas Engines
	Software for Embedded Optimisation
	Linear MPC of Wiener Systems

	Industrial Case Study II: MPC Feasibility Management in the Process Industry
	Infeasibility Handling for Linear MPC
	Handling of Prioritised Constraints
	Infeasibility Handling using the Online Active Set Strategy



	II Nonlinear Model Predictive Control
	Overview of Existing Methods for Nonlinear MPC
	Tackling the Infinite-Dimensional Optimisation Problem
	Indirect and Hamilton-Jacobi-Bellman Approaches
	Direct Methods

	Nonlinear Programming
	Definitions and Optimality Conditions
	Newton-Type Optimisation
	Sequential Quadratic Programming
	Interior-Point Methods

	Numerical Optimal Control
	Solving Linearised Subproblems
	Derivative Computation
	Comparison of Newton-Type Optimal Control Methods

	Algorithms Tailored to Nonlinear MPC
	Online Initialisations
	Parametric Sensitivities and Tangential Predictors
	Ideas to Reduce the Feedback Delay
	Sequential Approaches
	Simultaneous Approaches


	ACADO Toolkit
	Overview of the Software Package
	Introduction and Scope
	Algorithmic Features
	Software Design

	MPC Algorithms
	Generalised Gauss-Newton Method
	Real-Time Iteration Algorithm
	Time-Optimal NMPC
	Simulation Environment

	Numerical Example
	Start-Up of a Continuous Stirred Tank Reactor
	Using Fully Converged Solutions
	Employing the Real-Time Iteration Algorithm
	Computational Load of Real-Time Iterations


	Code Generation for Nonlinear MPC
	Introduction
	Auto-Generated Real-Time Iteration Algorithms
	Symbolic Problem Formulation
	Integration and Sensitivity Generation
	Solving the Linearised Subproblem
	The Auto-Generated Code

	Performance of the Generated Code
	Start-Up of a CSTR (Revisited)
	Real-Time Control of a Kite Carousel Model
	Scalability


	Conclusions
	Linear MPC
	Summary
	Directions for Future Research

	Nonlinear MPC
	Summary
	Directions for Future Research


	Bibliography
	List of Publications


