
Ruprecht-Karls-Universität Heidelberg

Fakultät für Mathematik und Informatik

An Online Active Set Strategy for

Fast Solution of Parametric Quadratic Programs

with Applications to Predictive Engine Control

Diplomarbeit

Betreuer: Professor Dr. Dr. h. c. Hans Georg Bock

Vorgelegt von Hans Joachim Ferreau

Heidelberg, November 2006

ii

Für meine Eltern

iii

iv

Zusammenfassung

Eine Echtzeit-Strategie zur Bestimmung aktiver Nebenbedingungen

für das schnelle Lösen parametrischer quadratischer Programme

mit Anwendungen auf die prädiktive Motorsteuerung

Beinahe jeder Algorithmus zur modellprädiktiven Regelung beruht auf der Echtzeit-Lösung

konvexer quadratischer Programme. In dieser Diplomarbeit wird eine maßgeschneiderte

Echtzeit-Strategie zur Bestimmung aktiver Nebenbedingungen entwickelt, um parametrische

quadratische Probleme – wie sie im Rahmen der modellprädiktiven Regelung auftreten – zu

lösen. Unsere Strategie nutzt die Kenntnis der Lösung des vorhergehenden quadratischen

Problems unter der Annahme aus, dass sich die Menge der aktiven Nebenbedingungen von

einem quadratischen Programm zum nächsten nicht wesentlich ändert. Außerdem stellen

wir eine Variante vor, bei der die Rechenzeit zum Zwecke realer Echtzeit-Anwendungen be-

grenzt wird. Eine effiziente Implementierung der vorgeschlagenen Echtzeit-Strategie wird

detailliert beschrieben und ihre Leistungsfähigkeit anhand von zwei anspruchsvollen Test-

beispielen aufgezeigt. Eines davon wurde zur Steuerung eines realen Dieselmotors entwor-

fen, bei der jedes der quadratischen Programme innerhalb weniger Millisekunden gelöst

werden muss. In den vorgestellten Beispielen zeigt sich, dass unsere Echtzeit-Strategie

etwa eine Größenordnung schneller als herkömmliche (Warmstart-)Algorithmen zur Lösung

quadratischer Programme ist.

Schlüsselwörter: modellprädiktive Regelung, parametrische quadratische Programmierung,

Echtzeit-Strategie zur Bestimmung aktiver Nebenbedingungen, Echtzeit-Optimierung, Mo-

torsteuerung

AMS-Klassifikationen: 90C20, 34H05, 93B52, 62P30

v

vi

Abstract

Nearly all algorithms for model predictive control (MPC) rely on solving convex quadratic

programs in real-time. In this thesis, we develop a specially tailored online active set strategy

for the fast solution of parametric quadratic programs arising in MPC. Our strategy exploits

solution information of the previous quadratic program (QP) under the assumption that

the set of active constraints does not change much from one QP to the next. Furthermore,

we present a modification where the CPU time is limited in order to make it suitable for

strict real-time applications. An efficient implementation of the proposed online active set

strategy is described in detail and its performance is demonstrated with two challenging

test examples. One of these was designed for controlling a real-world Diesel engine with

sampling times of a few milliseconds. In these examples, our strategy turns out to be an

order of magnitude faster than a standard active set QP solver (with warmstarts).

Key words: model predictive control, parametric quadratic programming, online active set

strategy, real-time optimisation, engine control

AMS subject classifications: 90C20, 34H05, 93B52, 62P30

vii

viii

Contents

Zusammenfassung v

Abstract vii

Acknowledgements xi

Notation xiii

1 Introduction 1

2 Theoretical Background and Motivation 3

2.1 Model Predictive Control . 3

2.2 Linear Model Predictive Control . 8

2.2.1 Problem Discretisation . 9

2.2.2 Closed-Loop Stability . 12

2.2.3 Condensing into a Smaller Scale Parametric Quadratic Program . . 14

2.3 Quadratic Programming . 16

2.3.1 Parametric Quadratic Programming 20

2.3.2 Explicit (Offline) Solution of Parametric Quadratic Programs 25

3 Existing Methods for Solving Quadratic Programs 27

3.1 Primal Active Set Methods . 27

3.1.1 Null Space Method . 31

3.1.2 Range Space Method . 33

3.2 Dual Active Set Methods . 33

3.3 Interior Point Methods . 37

4 An Online Active Set Strategy for Model Predictive Control 39

4.1 Main Idea . 39

4.2 Real-Time Variant . 43

4.3 Implementation Details . 44

4.3.1 Bounds and Constraints . 44

4.3.2 Null Space Approach . 45

4.3.3 Matrix Updates . 48

4.4 Initialisation . 54

4.5 Degeneracy Handling . 55

ix

Contents

4.5.1 Linear Dependence of Constraints 55

4.5.2 Infeasibility . 60

4.6 Computational Complexity . 62

4.6.1 Runtime Complexity . 62

4.6.2 Memory Requirements . 66

4.7 Further Refinements and Extensions . 66

4.7.1 Step Length Determination . 66

4.7.2 Extension to Sequential Quadratic Programming 67

5 Numerical Tests: Chain of Spring Connected Masses 69

5.1 Model Description and Problem Formulation 69

5.2 Numerical Results . 72

5.3 Summary of the Results . 78

6 Numerical Tests: Real-World Diesel Engine 79

6.1 Model Description and Problem Formulation 79

6.2 Numerical Results . 83

6.3 Summary of the Simulation Results . 87

6.4 Real-World Experiments . 88

7 Conclusions and Outlook 89

A Mathematical Basics 91

B Implementation Overview 93

B.1 Software Module OASES . 93

B.2 OASES in a Nutshell . 94

C Fast Nonlinear Model Predictive Control of Gasoline Engines 97

C.1 Introduction . 97

C.2 Model Description . 97

C.3 NMPC Problem Formulation . 97

C.4 Algorithm . 97

C.5 Simulation Results . 97

C.6 Conclusions and Future Work . 97

Bibliography 99

Index 105

x

Acknowledgements

I would like to express my deep gratitude to all people who helped me while writing this

thesis. First of all I thank my supervisors Professor Dr. Dr. h. c. Hans Georg Bock and

Professor Dr. Moritz Diehl for intensive personal support and excellent mathematical advice.

It was a great pleasure for me to share their enthusiasm in many inspiring conversations

and discussions on new ideas. I also thank Dr. Johannes Schlöder, Dr. Sebastian Sager

and Professsor Dr. Ekaterina Kostina for fruitful discussions on optimal control and related

subjects.

Moreover, I owe many thanks to all the other members of the “Simulation and Optimization

Group” (headed by Professor Dr. Dr. h. c. Hans Georg Bock and Dr. Johannes Schlöder)

of the Interdisciplinary Center for Scientific Computing (IWR) in Heidelberg—among them

Peter Kühl, Christian Kirches, Leonard Wirsching, Jan Albersmeyer, Andreas Potschka,

Gerrit Schultz, and Tanja Binder—for many pleasant conversations on almost any topic,

for sometimes “stealing” their time and, last but not least, for uncountably many cups of

coffee.

During the PREDIMOT project, whose topics were closely related to most parts of this

thesis, I worked together with some remarkably friendly persons: with Peter Langthaler and

Peter Ortner from the Johannes Kepler Universität in Linz as well as Professore Riccardo

Scattolini and Gabriele Lorini from the Politecnico di Milano. Financial support of the

REGINS-PREDIMOT European project is gratefully acknowledged.

xi

xii

Notation

Symbols

Scalar Sets

A working set

A(x) index set of active constraints at point x

F working set of free variables

F(x) index set of free variables at point x

I working set complement

I(x) index set of inactive constraints at point x

N set of natural numbers (greater than 0)

R field of real numbers

R≥0 set of nonnegative real numbers

R>0 set of positive real numbers

T time horizon of the controlled process

Tp prediction horizon

X working set of fixed variables

X(x) index set of fixed variables at point x

Vector and Matrix Sets

CRA critical region of an optimal active set A

D domain of a real function

F feasible set of a quadratic program

P set of feasible parameters of a parametric quadratic program

R
n set of real n-dimensional vectors

R
m×n set of real m× n-dimensional matrices

Sn set of real symmetric n× n-matrices

Sn�0 set of real symmetric positive semi-definite n× n-matrices

Sn�0 set of real symmetric positive definite n× n-matrices

xiii

Notation

Model Predictive Control

A system dynamics matrix (associated with process states)

B system dynamics matrix (associated with process inputs)

c constraint function

C output matrix (associated with process states)

δ sampling time

D output matrix (associated with process inputs)

f system dynamics ODE right hand side

g algebraic equations function of a DAE system

l constraint vector

M constraint matrix (associated with process outputs)

N constraint matrix (associated with process inputs)

ng number of algebraic equations of a DAE system

np length of discrete-time prediction horizon
np number of process parameters

nu number of process inputs

nx number of differential process states
ny number of process outputs

nz number of algebraic process states

ψ(·) Lagrange term of objective function

φ(·) Mayer term of objective function

p vector of process parameters

P terminal penalty weight matrix

Q objective function matrix (associated with process outputs)

R objective function matrix (associated with process inputs)

t time

tstart start time of the controlled process

tend end time of the controlled process

tp length of prediction horizon

u(t) vector of process inputs

x(t) vector of differential process states

y(t) vector of process outputs

x(t) vector of algebraic process states

Quadratic Programs

b constraint vector

bB lower bound vector

bB upper bound vector

bC lower constraints’ bound vector

xiv

Notation

bC upper constraints’ bound vector

C active constraints matrix

g gradient vector

G constraint matrix

H Hessian matrix

m number of constraints

n number of variables

nA number of constraints within working set A

nEC number of equality constraints

nF number of free variables within working set F

nX number of fixed variables within working set X

nZ dimension of restricted null space of active constraints matrix

w0 initial value parameter vector

x(k) kth iterate of the primal vector

y(k) kth iterate of the dual vector

xopt primal solution vector

yopt dual solution vector

Algorithm

·̃ indicates a homotopy from one QP to the next

Q orthonormal factor of TQ factorisation of CF

R upper triangular Cholesky factor of projected Hessian matrix

τ homotopy parameter

τmax maximum primal-dual stepsize within current critical region

T reverse lower triangular factor of TQ factorisation of CF

Y matrix containing orthonormal basis of the range space of CF

Z matrix containing orthonormal basis of the null space of CF

Test Examples

α weighting factor for difference of end position of the free end of the chain

β weighting factor for balls’ velocities

γ weighting factor for control action

d spring constant

g gravitational acceleration

L spring’s rest length

m mass of a single ball

ξwall wall’s position along the second coordinate axis

xend desired end position of the free end of the chain

xv

Notation

Gasoline Engine

α actuated throttle angle

Ath opening area of the throttle

C EGR specific constant

cpair specific heat at pressure of fresh air inside the intake manifold
cpegr specific heat at exhaust gas pressure

cvim specific heat at volume of intake manifold

ηv volumetric efficiency

ηcomb combustion efficiency

γ specific heat ratio

Γ engine torque

Hv calorific heat of the fuel

k throttle specific constant

kegr EGR specific constant

mair mass of fresh air inside the intake manifold
megr mass of exhausts inside the intake manifold

N engine rotational speed

NOx NOx emissions

pamb ambient pressure

pexh exhaust gas pressure

pim intake manifold pressure

ρ air density

R gas constant

Rim gas constant of intake manifold

τexh time lag of exhaust gas

Tegr temperature of exhaust gas

Tim temperature inside the intake manifold
uegr opening angle of EGR valve

Ve engine displacement

Vim volume of intake manifold

we mass flow rate from intake manifold to cylinders

wegr mass flow rate through EGR valve

wfuel fuel mass flow rate

wth mass flow rate through throttle

Others

∞ infinity

∀ for all

∃ there exist

xvi

Notation

∃! there exists exactly one

∅ empty set
� M power set of set M

� end of proof

� end of theorem, lemma, corollary or definition

Mathematical Expressions

Constants

�
real matrix of appropriate dimensions with all elements zero

�
real column vector of appropriate dimension with all components one

ei i-th column of the identity matrix with appropriate dimension

Oi,j(·) Givens plane rotation in the (i, j) coordinate plane

Idn n-dimensional identity matrix

Idr
n n-dimensional reverse identity matrix

e base of the natural logarithm

π twice the value of the smallest positive root of the real cosine function

Others

[·, ·] closed interval of real numbers

(·, ·) open interval of real numbers or two-dimensional row vector

·
def
= · defines the symbol on the left to equal the expression on the right
· =

def
· defines the symbol on the right to equal the expression on the left

· ← · assigns the value of the variable on the left to the variable on the right

M ′ transposed of matrix or vector M

M−1 inverse of regular matrix M

M † pseudoinverse of matrix M

|·| absolute value of a real number or cardinality of a set

‖·‖2 Euclidean norm of a matrix or vector

imM range space spanned by the columns of matrix M

M
1
2 square root of matrix M , i.e. M

1
2 ′M

1
2 = M

condM condition number of matrix M

ḟ(t) first derivative of function f with respect to time t

f̈(t) second derivative of function f with respect to time t

f
∣
∣
X

restriction of function f to set X

O(·) big-O notation

xvii

Notation

Abbreviations and Acronyms

Besides common expressions and SI units the following abbreviations and acronyms are

used:

BDF backward differentiation formulae

CO2 carbon dioxide

CPU central processing unit

DAE differential algebraic equation

EGR exhaust gas recirculation

HC hydrocarbon

iff if and only if

IVP initial value problem

LICQ linear independence constraint qualification

LP linear program

KKT Karush-Kuhn-Tucker

MAF mass air flow

MAP manifold absolute pressure

MPC model predictive control

MUSCOD multiple shooting code for direct optimal control (software package)

NLP nonlinear program

NMPC nonlinear model predictive control

NOx nitrogen oxide

OASES online active set strategy (software module)

ODE ordinary differential equation

QP quadratic program

RHC receding horizon control

rpm revolutions per minute

SQP sequential quadratic programming

s. t. subject to

VGT variable geometry turbocharger

VVT variable valve timing

xviii

Chapter 1

Introduction

Model predictive control (MPC) is an advanced control strategy which allows to determine

inputs of an arbitrary process that optimise the forecasted process behaviour. These inputs,

or control actions, are calculated repeatedly using a mathematical process model for the

prediction. In doing so, the fast and reliable solution of convex quadratic programming

problems in real-time becomes a crucial ingredient of nearly all algorithms for both linear and

nonlinear model predictive control. The success of linear MPC—where just one quadratic

program (QP) needs to be solved at each sampling instant—can even be attributed to the

fact that highly efficient and reliable methods for QP solution have existed for decades, and

that their computation times are much smaller than the required sampling times in typical

applications. On the other hand, in nonlinear MPC algorithms, quadratic programs often

arise as subproblems during the iterative nonlinear solution procedure, so that not only one,

but several QPs need to be solved at each sampling instant. In most MPC algorithms, the

arising QPs are treated by well-tested and efficient standard methods from optimisation.

The required sampling time, i.e. the time difference between two re-optimisations, strongly

depends on the velocity of the process dynamics. In practice, it normally varies between

some seconds or minutes, e.g. if huge distillation columns or polyethylene plants are to

be controlled (cf. [25], [26] or [19]), and a few milliseconds. Very short sampling times

especially arise if MPC is applied to fast mechanical systems, e.g. in the very recent field of

optimal control applications in the automotive area. Therein, engine control is a particular

challenge due to very fast and nonlinear dynamics, making sampling times in the order of

milliseconds necessary.

When sampling times become so short that the computation times for QP solution can no

longer be neglected, specialised algorithms that exploit the structure of the QPs arising in

MPC problems become an interesting alternative. Basically, two approaches to fast QP

solution in MPC can be distinguished:

(i) First, the explicit, or offline QP solution, which precomputes the QP solution for all

possibly arising problem instances. This can be done quite efficiently, as shown by [8],

but is limited to models with small state dimensions (below ten) and few constraints.

(ii) Second, the online QP solution is the classical way to treat the sequence of QPs in

MPC for varying initial values.

1

Chapter 1. Introduction

Several QP solution methods exist, among the most prominent are active set methods,

which come in two variants, namely primal [37], [39] and dual [45], [3] active set methods.

Unfortunately, for active set methods no polynomial bound on the runtime of the algorithm

can be given, as has famously been shown by Klee and Minty [56] in the context of linear

programming. Furthermore, (primal-dual) interior point methods, cf. [91], have become a

strong competitor to active set methods, and have also been proposed for use in MPC [73].

They possess relatively constant computational demands and a polynomial runtime guar-

antee can be given for them. However, interior point methods suffer from the drawback

that so far no efficient warm start techniques exist.

In this thesis a new active set strategy is proposed (see also [30], [29]) that is inspired by

some important observations from the field of parametric quadratic programming and can

neither be classified primal nor dual. It builds on the expectation that the active set does

not change much from one quadratic program to the next, but is different from conventional

warm starting techniques. Our online active set strategy comes in two variants: while the

first is just an alternative way to exactly solve the QPs arising in MPC efficiently (but

without theoretical runtime limit), the second one is able to give a CPU time guarantee.

This guarantee, however, comes at the expense of sometimes not solving exactly the QP

that we want to solve within the given sampling time. In these circumstances—that arise

e.g. after large disturbances of the controlled process—an intermediate QP that lies between

the previous problem and the current one is solved, instead.

An implementation of the proposed online active set strategy, the software module OASES,

was tested on two test examples and its performance was compared to that of existing

methods for solving QPs, namely the primal active set solver qpsol [62] and an imple-

mentation of the explicit approach [9]. The first test example is a variant of a challenging

benchmark problem (first presented in [86]) where a chain of spring connected masses is

regulated back into its steady-state after a strong excitation. Second, we aim at controlling

a real-world Diesel engine at the Institute for Design and Control of Mechatronical Systems

in Linz, Austria.

The thesis is organised as follows: in Chapter 2 the required and motivating theoretical back-

ground of model predictive control, with focus on linear MPC, and parametric quadratic

programming is briefly summarised. Afterwards, Chapter 3 reviews several existing and

widely used methods for solving quadratic programs. Our online active set strategy, includ-

ing its real-time variant, is presented in Chapter 4 which also contains a short discussion

on degeneracy handling and implementation details. The mentioned test problems form

the basis of a performance analysis of the proposed online active set strategy in Chapters 5

and 6. Finally, Chapter 7 is devoted to a conclusion and some ideas for future work.

The appendices comprise mathematical basics (Appendix A) and an implementation overview

of the software module OASES (Appendix B). Ultimately, an application of fast nonlinear

model predictive control to a gasoline engine is presented in Appendix C, which initiated

the development of our online active set strategy from a practical point of view.

2

Chapter 2

Theoretical Background and

Motivation

This chapter begins by introducing the concepts of model predictive control. Putting the

focus on linear model predictive control naturally leads us to the description of a special

optimisation problem, the so called (parametric) quadratic program. We show how its

particular structure is exploited by the recently developed explicit solution approach which

motivated the proposed online active set strategy.

2.1 Model Predictive Control

Main concept of model predictive control (MPC) is to repeatedly calculate control actions

which optimise the forecasted process behaviour. The prediction is based on a mathematical

process model leading to a so-called open-loop optimal control problem which is solved at

each sampling instant. The optimised control action is applied to the system until the next

sampling instant when an updated optimal control problem, incorporating the new process

state, is solved. Hence, model predictive control is a feedback control strategy, sometimes

also referred to as receding horizon control (RHC).

A (continuous-time) process model for a time inteval T
def
= [tstart, tend] ⊂ R, −∞ < tstart ≤

tend ≤ ∞, consists of

1. process inputs, or controls or manipulated variables, u : T → R
nu ,

2. process states, divided into

(a) differential states x : T → R
nx and

(b) algebraic states z : T → R
nz

3. process parameters p ∈ R
np

4. process outputs, or controlled variables, y : T → R
ny ,

and defines a mapping (in function spaces) from a suitable subset of process input functions1

to the set of process output functions. This mapping is implicitly given by an initial process

1E.g. the set of all process input functions such that (2.1.1) has a unique solution and (2.1.2) is defined

for all t ∈ T.

3

Chapter 2. Theoretical Background and Motivation

state value and a system of differential algebraic equations (DAE)

x(tstart) = w0 , (2.1.1a)

ẋ(t) = f
(
t, x(t), z(t), u(t), p

)
∀ t ∈ T , (2.1.1b)

�
= g

(
t, x(t), z(t), u(t), p

)
∀ t ∈ T , (2.1.1c)

as well as

y(t)
def
= ŷ

(
t, x(t), z(t), p

)
∀ t ∈ T , (2.1.2)

where w0 ∈ R
nx , f : Df ⊆ R

1+nx+nz+nu+np → R
nx, g : Dg ⊆ R

1+nx+nz+nu+np → R
ng ,

and ŷ : Dŷ ⊆ R
1+nx+nz+np → R

ny .

It should be noted that there exists a great variety of different model types within the MPC

context which can be roughly divided into first principles models and identified models.

First principles models try to replicate, e.g., physical or chemical laws of nature whereas

identified models are based on empirical measurements of the real process. The definition

given above is suited for dynamical first principles models which will be used throughout this

thesis except for Chapter 6. In the latter case dynamical identified models are used which

were obtained by choosing the so-called state-space representation (2.1.1)-(2.1.2) such

that it best matches the measured inputs to the measured outputs. An important class

of identified models are so-called step or impulse response models, which do not include

process states and are described in more detail in [18]. Another approach, which does not

clearly fit into the mentioned categories, is the usage of neural network models [69]. Further

examples for the different model types and their application in industry can be found in [72].

Model predictive control uses a process model in order to forecast the process dynamics

as well as the process outputs and calculates inputs which optimise this predicted process

behaviour with respect to a so-called objective function and subject to desired constraints.

The forecasting is performed for a certain period, the prediction horizon of length tp ∈ R>0,

by integrating the model equations (2.1.1).

A (continuous-time) objective function measures the process performance over the predic-

tion horizon Tp
def
= [t0, t0 + tp], t0 ∈ [tstart, tend − tp], and is usually of the following Bolza

type:
t0+tp∫

t0

ψ
(
t, y(t), u(t)

)
dt + φ

(
y(t0 + tp)

)
, (2.1.3)

where ψ : Dψ ⊆ R
1+ny×nu → R and φ : Dφ ⊆ R

ny → R are called Lagrange and

objective function!Mayer term, respectively. Note that the Lagrange term measures the

process performance during the prediction horizon whereas the Mayer term only evaluates

the process output at the end of the prediction horizon. We use the common convention

that the objective function is formulated in such a way that we aim at minimising its value.

One of the most important features of MPC is its capability to guarantee that process

inputs or outputs satisfy desired constraints which can be written in the following general

form

l ≤ c
(
t, y(t), u(t), p

)
, (2.1.4)

4

2.1. Model Predictive Control

where c : Dc ⊆ R
1+ny+nu+np → R

nc is a suitable function defining, together with

l ∈ R
nc, nc inequality constraints. It is obvious that also equality constraints can be

expressed using this formulation (although they could be included in g, too).

With these ingredients, namely Eqs. (2.1.1)-(2.1.4), we are able to formulate

Definition 2.1 (open-loop optimal control problem): An open-loop optimal control prob-

lem over the prediction horizon Tp
def
= [t0, t0+tp], tp ∈ R>0, is the task of finding an optimal

process input u(t) solving

OCP(t0) : min
x(t), z(t),
u(t), y(t)

t0+tp∫

t0

ψ
(
t, y(t), u(t)

)
dt + φ

(
y(t0 + tp)

)
(2.1.5a)

s. t. x(t0) = w0(t0) , (2.1.5b)

ẋ(t) = f
(
t, x(t), z(t), u(t), p

)
∀ t ∈ Tp , (2.1.5c)

�
= g

(
t, x(t), z(t), u(t), p

)
∀ t ∈ Tp , (2.1.5d)

y(t) = ŷ
(
t, x(t), z(t), p

)
∀ t ∈ Tp , (2.1.5e)

l ≤ c
(
t, y(t), u(t), p

)
∀ t ∈ Tp , (2.1.5f)

where the notation w0(t0) indicates that the inital process state depends on the starting

time t0. �

Let us assume that the process to be controlled via MPC starts at time instant tstart, ends

at time instant tend (∞ < tstart < tend <∞) and that

t0 < t1 < . . . < tnsample
, nsample ∈ N , (2.1.6a)

t0
def
= tstart , tnsample

def
= tend (2.1.6b)

is a sequence of sampling instants satisfying

ti − ti−1 ≤ tp ∀ i ∈ {1, . . . , nsample} . (2.1.7)

After the solution of OCP(ti) the optimal process input ŭopt(t) is applied to the process

until the next sampling instant ti+1. Then the current process state is obtained (measured

or estimated) and the optimal control problem OCP(ti+1) is solved with this updated

initial value for the process state. This yields the model predictive control concept which

is summarised in Algorithm 2.1 and illustrated in Fig. 2.1.

One may ask why it is necessary to solve the open-loop optimal control problem repeatedly:

If one would choose tp
def
= tend−tstart it would suffice to solve the first problem OCP(tstart)

and to apply the resulting justified if one assumes, from a purely theoretical point of

view, that the model describes the real process exactly and that all inputs can be applied

instantaneously to the real process.

However, these conditions are never satisfied in a real-world environment: except for very

rare cases there are always discrepancies between the model and real process, known as

model-plant mismatch, as the real process is too complex to model it exactly. Sometimes the

process dynamics are not even known completely making approximations or interpolations

5

Chapter 2. Theoretical Background and Motivation

necessary. Moreover, unknown disturbances are almost always present in real-world and

measurement noise2 impedes the exact determination of the initial process state. On the

other hand, the calculated optimal inputs often cannot be applied exactly to the real process.

Since actuators, valves and even electronic devices need a short time period, known as dead

time, to react, there is always a short delay in the application of the optimal inputs (although

this could be counteracted by prediction). A further delay stems from the fact that the

controller needs some time to calculate the new optimal inputs. And even if these delays

are negligible, deviations between the optimised and the applied inputs may occur because

the actuators are not able to behave like an, in principle, arbitrary (measurable) function

u(t) including discontinuities.

All these circumstances make a feedback control strategy mandatory for a real-world setup.

The incorporation of the current process state (as initial value) at each sampling instant

adjusts the predicted process behaviour to the real one leading to more reliable results.

Normally the more severe the above-mentioned effects are the more sampling instants are

chosen. If the sampling instants are chosen equidistant, i.e.

δ
def
=

tend − tstart
nsample

, ti
def
= i · δ ∀ i ∈ {1, . . . , nsample} , (2.1.8)

we call δ ∈ R>0 the sampling time.

Algorithm 2.1 (model predictive control concept)

input: open-loop optimal control problem OCP(t0),

sequence of sampling instants t0, t1, . . . , tnsample−1 as defined in (2.1.6)

output: piecewise defined optimal process inputs uopt : [tstart, tend] → R
nu

(1) Set i← 0.

(2) Obtain current process state w0(ti) and formulate OCP(ti).

(3) Obtain ŭopt(t), t ∈ [ti, ti + tp], by solving OCP(ti).

(4) Set uopt(t)
def
= ŭopt(t) ∀ t ∈ [ti, ti+1] and apply ŭopt(t)

∣
∣
[ti,ti+1]

to the process until

ti+1.

(5) if i = nsample − 1:

stop!

else

Set i← i+ 1 and continue with step (2).

2We should emphasise that the current process state w0 is never known exactly in practice since it has

to be obtained by means of (more or less) inaccurate sensors.

6

2.1. Model Predictive Control

PSfrag replacements

t0 t0 + δ t0 + tp t

uopt(t)

y(t)

Figure 2.1: Main concept of model predictive control.

So far, our model predictive control formulation has been rather general as we did not

pose further conditions on the functions f , g, ŷ, c, ψ or φ. These functions should be

sufficiently smooth, e.g. twice continuously differentiable, in order to guarantee the existence

(and uniqueness) of a solution but they can, in principle, be arbitrary nonlinear functions.

The open-loop optimal control problems arising in this nonlinear model predictive control

(NMPC) context can, e.g., be solved using the direct multiple shooting method (see [15],

[14], [23], [24]) which is briefly summarised in Appendix C, where also an application

example is given.

For ease of notation we eliminate the explicit dependencies of f , g, ŷ, c on t and p, which

can be done without loss of generality:

• Our definition allows process models depending explicitly on time; most presentations

on this topic, however, require the process model to be time-invariant, or autonomous.

Explicit time dependence can be eliminated if an additional state xnx+1(t) and the

additional differential equation

xnx+1(tstart) = tstart , (2.1.9a)

ẋnx+1(t) = 1 ∀ t ∈ T (2.1.9b)

is introduced.

• Process parameters can be written as differential states by introduction of additional

states xnx+i(t), 1 ≤ i ≤ np, and imposing the additional equations

xnx+i(tstart) = pi ∀ i ∈ {1, . . . , np} , (2.1.10a)

ẋnx+i(t) = 0 ∀ t ∈ T ∀ i ∈ {1, . . . , np} . (2.1.10b)

7

Chapter 2. Theoretical Background and Motivation

The following presentation is restricted to time-invariant, linear open-loop optimal control

problems as they are more directly linked to the utilisation of the proposed online active set

strategy. Furthermore, from now on we make the assumption that the process model does

not include algebraic variables. This means that the process state is described by a system

of ordinary differential equations (ODEs)

x(tstart) = w0 , (2.1.11a)

ẋ(t) = f
(
x(t), u(t)

)
∀ t ∈ T , (2.1.11b)

instead of a DAE system (2.1.1). This assumption is very common within the linear model

predictive control community.

2.2 Linear Model Predictive Control

The name linear model predictive control refers to situations in which a linear time-invariant

process model, linear constraints and a quadratic objective function is used. This does not

imply that the real process to be controlled has linear dynamics.

A (continuous-time) process model is called linear time-invariant (LTI) if it can be written

in the form

x(tstart) = w0 , (2.2.1a)

ẋ(t) = Ax(t) +Bu(t) ∀ t ∈ T , (2.2.1b)

y(t) = Cx(t) ∀ t ∈ T , (2.2.1c)

with constant3 matrices A ∈ R
nx×nx , B ∈ R

nx×nu , C ∈ R
ny×nx. Since almost all real

processes exhibit nonlinearities, linear process models are often obtained by linearising a

nonlinear model at some working point, normally at a steady-state.

Definition 2.2 (steady-state): Every pair (x̂, û) satisfying

�
= f

(
x̂, û

)
(2.2.2)

is called a steady-state of a system of ordinary differential equations

ẋ(t) = f
(
x(t), u(t)

)
∀ t ∈ T . (2.2.3)

This means that a process is at a steady-state iff it remains there if input û is applied. �

Constraints for a process model are called linear iff they can be written as

l ≤ My(t) +Nu(t) , (2.2.4)

with constant matrices M ∈ R
nc×ny , N ∈ R

nc×nu and a constant lower bound vector

l ∈ R
nc. As a special case of (2.2.4), in most linear MPC problems at least bounds on the

inputs and outputs are imposed, i.e.

u ≤ u(t) ≤ u ∀ t ∈ T , (2.2.5a)

y ≤ y(t) ≤ y ∀ t ∈ T , (2.2.5b)

3Linear time-variant process models allow for time-varying matrices A(t), B(t) and C(t).

8

2.2. Linear Model Predictive Control

where u, u ∈ R
nu and y, y ∈ R

ny . Input bounds typically express physical limitations of the

actuators, output bounds are often necessary to ensure safe process operating conditions.

The objective function (of Bolza type) is (convex) quadratic iff it can be written as

1

2

t0+tp∫

t0

(y(t)− yref)
′Q (y(t)− yref) + (u(t)− uref)

′R (u(t)− uref) dt

+
1

2
(y(t0 + tp)− yref)

′P (y(t0 + tp)− yref) ,

(2.2.6)

with constant matrices Q ∈ S
ny

�0, R ∈ S
nu

�0, P ∈ S
ny

�0 and constant reference value vectors

yref ∈ R
ny , uref ∈ R

nu.

Matrix Q—we will discuss the meaning of P later—may penalise deviations of the pro-

cess outputs from a certain reference value, therefore positive semi-definitness is assumed.

Matrix R is required to be positive definite in order to penalise deviations of the process

inputs from a desired reference value. Positive definiteness of R is also necessary in order

to ensure that the resulting optimisation problem is strictly convex, as will be shown in

Theorem 2.2. MPC problems with this type of objective are often referred to as reference

tracking problems; also trajectory tracking problems where yref and uref vary with time are

conceivable. In the special case where y(t)
def
= x(t) ∀ t ∈ T, yref

def
=

�
, uref

def
=

�
they aim at

regulating the process to the origin.

After these preperations we can give the following

Definition 2.3 (linear open-loop optimal control problem): A linear open-loop optimal

control problem over the prediction horizon Tp
def
= [t0, t0+tp], tp ∈ R>0, is the task of finding

an optimal process input u(t) solving

OCPlin(t0) : min
x(t), u(t),

y(t)

1

2

t0+tp∫

t0

(y(t)−yref)
′Q (y(t)−yref) + (u(t)−uref)

′R (u(t)−uref) dt

+
1

2
(y(t0 + tp)−yref)

′P (y(t0 + tp)−yref) (2.2.7a)

s. t. x(t0) = w0(t0) , (2.2.7b)

ẋ(t) = Ax(t) +Bu(t) ∀ t ∈ Tp , (2.2.7c)

y(t) = Cx(t) ∀ t ∈ Tp , (2.2.7d)

l ≤ My(t) +Nu(t) ∀ t ∈ Tp , (2.2.7e)

where all quantities are defined as in Eqs. (2.2.1), (2.2.4), (2.2.6). �

2.2.1 Problem Discretisation

If u(t) is allowed to be an arbitrary measurable real-valued function, OCPlin (and its gen-

eralisation OCP) is an infinite dimensional (over R) optimisation problem. Although there

exist necessary conditions—based on the calculus of variations or Pontryagin’s maximum

principle [49], [70]—for finding the optimal solution of such problems, these so-called indi-

rect methods are of limited use for MPC purposes (cf. [12, p. 85-87]).

9

Chapter 2. Theoretical Background and Motivation

Direct methods parameterise the control functions in order to reduce the optimal control

problem to a finite dimensional one. This loss of degrees of freedom greatly simplifies the

solution of the problem but is normally irrelevant for process performance in practice. A

very popular control parameterisation is to require that the control functions are piecewise

constant (or piecewise linear) on an equidistant grid, as anticipated in Figure 2.1. If the

prediction horizon [t0, t0+tp] is divided into np intervals of length δp
def
=

tp
np

this can formally

be written as:

u(t0 + i · δp + t)
def
= ui ∀ t ∈ [0, δp) ∀ i ∈ {0, . . . , np − 1} , (2.2.8a)

u(t0 + tp)
def
= unp−1 , (2.2.8b)

with ui ∈ R
nu, 0 ≤ i ≤ np − 1. In general, it is reasonable to choose

δp
def
= σ · δ , σ ∈ N . (2.2.9)

After a control parameterisation the trajectories x(t) and y(t) can be expressed as func-

tions of the initial value w0 and finitely many optimisation variables u0, . . . , unp−1; thus

the optimal control problem OCPlin is transformed into a quadratic program (QP) which

comprises a quadratic objective function and linear constraints4. Direct methods are usually

subdivided into three main variants depending on the way in which these trajectories are

evaluated:

• direct single shooting integrates the ODE system over the whole prediction horizon

at once for fixed values of w0 and ui;

• direct multiple shooting [15] solves the ODE system independently on each interval

[t0 + i · δp, t0 + (i+ 1) · δp] by introducing additional intermediate initial values and

adding continuity constraints to the NLP (see Section C.4 for further details);

• direct collocation [79] approximates the trajectory x(t) by piecewise polynomials

which satisfy the ODE only at a the points of a fine grid.

Also the constraints need to be discretised and their fulfilment is ensured only at a finite

number of time instants, e.g. at t0 + i · δp, 1 ≤ i ≤ np − 1. Similarly, the continuous

objective function is evaluated on a discrete time-grid only (of course, this is always done

when using numerical quadrature formulae).

For the solution of linear open-loop optimal control problems a direct single or multiple

shooting approach is often appropriate. Therefore we parameterise the controls, or process

inputs, as piecewise constant functions on an equidistant grid T
disc
p

def
= {k0, . . . , k0 + np − 1}.

The objective function as well as the constraints are evaluated only at the time instants of

this grid and thus the values of the trajectories x(t) and y(t) are calculated only there. We

end up with a

4In the general case the optimal control problem OCP is transformed into a nonlinear programming

(NLP) problem with a nonlinear objective function and possibly nonlinear constraints.

10

2.2. Linear Model Predictive Control

Definition 2.4 (discrete-time linear open-loop optimal control problem): A discrete-

time linear open-loop optimal control problem over the discrete-time prediction horizon

T
disc
p

def
= {k0, . . . , k0 + np − 1}, np ∈ N, is the task of finding a sequence of constant

optimal process inputs uk0 , . . . , uk0+np−1 solving

OCPdisc
lin (k0) : min

xk0
,...,xk0+np

,

yk0
,...,yk0+np

,

uk0
,...,uk0+np−1

1

2

k0+np−1
∑

k=k0

(yk−yref)
′Q (yk−yref) + (uk−uref)

′R (uk−uref)

+
1

2

(
yk0+np−yref

)
′P
(
yk0+np−yref

)
(2.2.10a)

s. t. xk0 = w0(k0) , (2.2.10b)

xk+1 = Adiscxk +Bdiscuk ∀ k ∈ T
disc
p , (2.2.10c)

yk = Cxk ∀ k ∈ T
disc
p ∪ {k0 + np} , (2.2.10d)

l ≤ Myk +Nuk ∀ k ∈ T
disc
p , (2.2.10e)

where all quantities, except for Adisc ∈ R
nx×nx and Bdisc ∈ R

nx×nu , are defined as in

Eqs. (2.2.1), (2.2.4), (2.2.6). �

The discrete-time system matrices Adisc and Bdisc can be calculated from their continuous

counterparts: standard calculus leads to the solution of the ODE system (2.2.7c)

x(t) = e(t−t0)Ax(t0) +

t∫

t0

e(t−s)ABu(s) ds ∀ t ≥ t0 . (2.2.11)

If the process input on the intervall [k0, k1]
def
= [t0, t0 + δp] has constant value u0 ∈ R

nu ,

the process state at time instant t0 + δp is

x(t0 + δp) = e(t0+δp−t0)Ax(t0) +

t0+δp∫

t0

e(t0+δp−s)ABu(s) ds (2.2.12a)

= eδpA
︸︷︷︸

=
def

Adisc

x(t0) +






t0+δp∫

t0

e(t0+δp−s)AB ds






︸ ︷︷ ︸

=
def

Bdisc

u0 . (2.2.12b)

It is easy to show by induction that the process states at all time instants in T
disc
p can be

obtained via the same matrices Adisc and Bdisc accordingly, provided that the values of

T
disc
p are equidistant. For ease of notation, we drop the superscript “disc” from Adisc, Bdisc

and T
disc
p in the remainder of this thesis if an equidistant discrete-time prediction horizon

is used.

11

Chapter 2. Theoretical Background and Motivation

2.2.2 Closed-Loop Stability

Now, we will give a short discussion on the meaning of the so-called terminal penalty

weight matrix P in Eqs. (2.2.6), (2.2.7a) and (2.2.10a). It is introduced in order to

compensate the finiteness of the prediction horizon Tp: due to (online) solution complexity

the prediction horizon is usually much shorter than the total runtime of the controlled

process, i.e. tp � tend − tstart. Thus it may happen that optimal process inputs for the

time interval [ti, ti+ tp] lead to very poor process performance afterwards. Of course, there

will be re-optimisations until ti+tp but too short-sighted actions can spoil future behaviour,

anyway, and it may even happen that the controller causes the process to start oscillating.

This observation, which has also great practical relevance, is topic of a huge number of

articles which investigate (necessary and) sufficient conditions for stability of a controlled

process (see e.g. [76], [55], [13], [20], [61] and the references therein).

We consider a (discrete-time) time-invariant linear process model as described by equa-

tions (2.2.10b)-(2.2.10d). Let us assume that the corresponding optimal control problem

OCPdisc
lin (k0) is feasible for all w0

def
= w0(k0) ∈ R

nx and its (unique) optimal solution is

the sequence uk0(w0), . . . , uk0+np−1(w0). Then we can define a (usually nonlinear) vector-

valued mapping

J : R
nx −→ R

nu

w0 7−→ uk0(w0) ,
(2.2.13)

which enables us to write the ODE system of the closed-loop controlled process model as

xk0 = w0 , (2.2.14a)

xk+1 = Axk +BJ(xk) ∀ k ∈ Tp (2.2.14b)

= (A+BJ)(xk) ∀ k ∈ Tp . (2.2.14c)

If (x̂, û) ∈ R
nx+nu denotes an arbitrary steady-state of the process model and

yref
def
= Cx̂ , uref

def
= û (2.2.15)

is chosen, J(x̂) = û holds because the objective function has optimal value 0 for the choice

uki
= û ∀ i ∈ {0, . . . , np − 1}. Thus, if the closed-loop controlled process is at this steady-

state it will stay there. The controlled process is called closed-loop asymptotically stable if

it returns to the steady-state (x̂, û) from every initial process state value:

Definition 2.5 (closed-loop asymptotic stability): Let a discrete-time time-invariant

linear process model with steady-state (x̂, û), a corresponding open-loop optimal control

problem OCPdisc
lin (k0) (which is feasible for all w0 ∈ R

nx) satisfying the definitions (2.2.15)

and a map J as in (2.2.13) be given.

Then the process model closed-loop controlled through J is called closed-loop asymptoti-

cally stable iff

‖xk − x̂‖2 → 0 as k → ∞ , (2.2.16)

no matter from which initial process state w0 ∈ R
nx the closed-loop control is started. �

12

2.2. Linear Model Predictive Control

It is easy to show that a closed-loop controlled process model is closed-loop asymptotically

stable if and only if the norm of all eigenvalues of the mapping A+BJ in Eq. (2.2.14c) is

smaller than one. Under some mild conditions (stabilisability5 and detectability5), it can be

shown that linear MPC is closed-loop asymptotically stable if an infinite prediction horizon

is used (cf. e.g. [2, p. 773]). For linear MPC with a finite prediction horizon the following

result holds [74]:

Theorem 2.1 (stability of linear MPC): Let

min
uk0

,...,uk0+np−1

1

2

k0+np−1
∑

k=k0

x′kQxk + u′kRuk +
1

2
x′k0+np

Pxk0+np (2.2.17a)

s. t. xk0 = w0(k0) , (2.2.17b)

xk+1 = Axk +Buk ∀ k ≥ k0 , (2.2.17c)

x ≤ Mxk ∀ k ≥ k0 , (2.2.17d)

u ≤ Nuk ∀ k ≥ k0 , (2.2.17e)

with x ∈ R
nx , u ∈ R

nu and x, u <
�
, be a discrete-time linear open-loop optimal control

problem with vectors and matrices defined as in Definition 2.4. If, in addition, (A, B) is

stabilisable,
(
Q

1
2 , A

)
is detectable, and if P is the (unique) solution of the discrete algebraic

Riccati equation

P = Q+A′PA−A′PB
(
R+B′PB

)−1
B′PA . (2.2.18)

Then there exists a finite value np
def
= n∗p ∈ N such that the sequence of optimal process

inputs uk0 , . . . , uk0+n∗

p−1 as well as the optimal objective function value of (2.2.17) are also

optimal for the choice np
def
= ∞ (without the summand including P). Thus, also the optimal

control problem (2.2.17) with finite prediction horizon n∗
p is closed-loop asymptotically

stable. �

Proof: Can be found in [74]. �

This result shows that it is possible to replace the linear open-loop optimal control problem

over an infinite horizon (np =∞) by a finite one whithout losing optimality and stability.

Since it only states the existence of such an n∗
p ∈ N the question remains open: how

to choose np in practice? The proof of Theorem 2.1 is based on the observation that

there always exists a time instant n∗
p as from which no input or state constraint would

be violated even if they were omitted from the problem formulation (yielding the so-called

linear-quadratic regulator [53]). If such an n∗p is chosen as length of the finite prediction

horizon optimality of the solution is preserved. Therefore, it is suggested in [64], where a

similar strategy for the nonlinear case is presented, to ensure that np “is ‘large’ compared

to the system dynamics”. Of course, this is not a rigorous answer but as a rule-of-thumb

it should suffice to choose the length of the prediction horizon a few times larger than the

time the process needs to return into a steady-state after a strong pertubation.

5For a definition see any textbook on control theory, e.g. [2] or [90].

13

Chapter 2. Theoretical Background and Motivation

2.2.3 Condensing into a Smaller Scale Parametric Quadratic Program

In this section we will show how the discretised linear open-loop optimal control problem

OCPdisc
lin (k0), which is a parametric quadratic program (cf. Definition 2.11), can be trans-

formed into a smaller scale one. For ease of notation, we consider only the case when

the process is to be regulated to the origin (i.e. yk
def
= xk ∀ k ≥ k0, yref

def
=

�
, uref

def
=

�
),

adaptations to the general situation are straightforward.

Using Eq. (2.2.10c) all process states at time instants greater than k0 can be expressed via

the inital process state xk0 and the input sequence uk0 , . . . , uk0+np−1:

xk0+1 = Axk0 +Buk0 , (2.2.19a)

xk0+2 = A (Axk0 +Buk0) +Buk0+1 = A2xk0 +ABuk0 +Buk0+1 , (2.2.19b)

...

xk0+j = Ajxk0 +

j−1
∑

i=0

Aj−1−iBuk0+i , j ∈ {0, . . . , np} . (2.2.19c)

In order to reformulate OCPdisc
lin (k0) we introduce the following augmented quantities:

x̄
def
=








xk0
xk0+1

...

xk0+np







, ū

def
=








uk0
uk0+1

...

uk0+np−1







, (2.2.20a)

Q̄
def
=











Q

Q
.. .

Q

P











, R̄
def
=








R

R
. . .

R







, (2.2.20b)

Ā
def
=













Id

A

A2

...

Anp−1

Anp













, B̄
def
=













�

B

AB B
...

. . .
. . .

Anp−2B · · · AB B

Anp−1B Anp−2B · · · AB B













, (2.2.20c)

M̄
def
=









M
�

M
...

. . .
...

M
�









, N̄
def
=








N

N
. . .

N







, l̄

def
=








l

l
...

l







, (2.2.20d)

wherein x̄ ∈ R
(np+1)·nx , ū ∈ R

np·nu , Q̄ ∈ R
(np+1)·nx×(np+1)·nx , R̄ ∈ R

np·nu×np·nu ,

Ā ∈ R
(np+1)·nx×nx , B̄ ∈ R

(np+1)·nx×np·nu , M̄ ∈ R
np·nc×(np+1)·nx , N̄ ∈ R

np·nc×np·nu ,

14

2.2. Linear Model Predictive Control

l̄ ∈ R
np·nc. Then the discrete linear open-loop optimal control problem OCPdisc

lin (k0) (for

regulating the process to the origin) can be written as follows:

min
ū

1
2 x̄

′Q̄x̄+ ū′R̄ū (2.2.21a)

s. t. xk0 = w0(k0) , (2.2.21b)

x̄ = Āxk0 + B̄ū , (2.2.21c)

l̄ ≤ M̄x̄+ N̄ ū . (2.2.21d)

Substituting (2.2.21b) and (2.2.21c) into the objective (2.2.21a) and the constraints (2.2.21d)

yields

min
ū

1
2 ū

′
(
B̄′Q̄B̄ + R̄

)
ū+ ū′

(
B̄′Q̄Ā

)
w0(k0) + 1

2w0(k0)
′Ā′Q̄Āw0(k0) (2.2.22a)

s. t. l̄ ≤ M̄Āw0(k0) +
(
M̄B̄ + N̄

)
ū . (2.2.22b)

This leads to

Theorem 2.2 (linear MPC and parametric QPs): The discrete-time linear open-loop op-

timal control problem (2.2.10) (with Q ∈ S
ny

�0, P ∈ S
nu

�0, R ∈ S
ny

�0) for a given constant

w0 ∈ R
nx is a parametric quadratic program of the form

min
ū

1
2 ū

′H̄ū+ ū′F̄w0 (2.2.23a)

s. t. Ḡū ≥ l̄ − Ēw0 , (2.2.23b)

where H̄ ∈ R
np·nu×np·nu, F̄ ∈ R

np·nu×nx , Ḡ ∈ R
np·nc×np·nu, Ē ∈ R

np·nc×nx , and the other

quantities are defined as in Eqs. (2.2.20). Moreover, the matrix H̄ is positive definite. �

Proof: The first statement follows directly from the discussion above by setting the ma-

trices H̄
def
= B̄′Q̄B̄+ R̄, F̄

def
= B̄′Q̄Ā, Ḡ

def
= M̄B̄+ N̄ , Ē

def
= M̄Ā and the remark that the

last summand of Eq. (2.2.22a) can be omitted since it is constant for fixed w0(k0). It is

easy to show that a QP of the same form is obtained for reference tracking problems.

It remains to prove that H̄ is positive definite: Q ∈ Snx

�0 and P ∈ Snx

�0 imply that Q̄ is

positive semi-definite and thus also B̄′Q̄B̄. Furthermore, R ∈ Snu

�0 implies that also R̄ is

positive definite. Since H̄ is a sum of a positive semi-definite and a positive definite matrix

it follows H̄ ∈ S
np·nu

�0 . �

Following [15], we call the transition from the large structured QP (2.2.21) to the smaller,

but less structured QP (2.2.23) condensing . As a generalisation of Theorem 2.2, it can

be shown that the solution of a (discretised) nonlinear MPC open-loop control problem

is equivalent to the solution of a nonlinear program (NLP). Usage of the direct multiple

shooting approach [15] leads to specially structured NLPs which can efficiently be solved

via a sequential quadratic programming (SQP) method [71], [85]. This class of methods is

based on the successive solution of a sequence of quadratic programs, instead of a single

one as in linear MPC (see also Section 4.7.2).

15

Chapter 2. Theoretical Background and Motivation

2.3 Quadratic Programming

In Section 2.2 we have seen that linear open-loop optimal control problems can be expressed

as (parametric) quadratic programs:

Definition 2.6 (quadratic program): The optimisation problem

QP : min
x∈Rn

1
2x

′Hx+ x′g (2.3.1a)

s. t. Gx ≥ b , (2.3.1b)

with

• the Hessian matrix H ∈ Sn
def
= {M ∈ R

n×n | M = M ′},

• the gradient vector g ∈ R
n,

• the constraint matrix G ∈ R
m×n, and

• the constraint vector b ∈ R
m,

is called a quadratic program. �

Therein, the inequality constraints (2.3.1b) can also contain equality constraints, upper

constraints’ bounds as well as bounds on single variables xi, 1 ≤ i ≤ n, by virtue of a

proper choice of G and b.

We denote the i-th row of the constraint matrix G by the vector G′
i; the matrix composed

of the rows corresponding to constraints in any (ordered) index set A ⊆ {1, . . . ,m} is

denoted by GA. The corresponding part of the constraint vector b (or any other vector

v ∈ R
m) is denoted by bA (vA).

Definition 2.7 (feasibility, boundedness and convexity of a QP): A quadratic program

as defined in Definition 2.6 is called

• feasible iff its feasible set

F
def
=
{
x̌ ∈ R

n | Gx̌ ≥ b
}

(2.3.2)

is nonempty and infeasible otherwise;

• bounded (from below) iff there exists a number α ∈ R such that

α ≤
1

2
x̌′Hx̌+ x̌′g ∀ x̌ ∈ F (2.3.3)

and unbounded otherwise;

• convex iff its Hessian matrix H is positive semi-definite, i.e.

H ∈ Sn�0 , Sn�0
def
=
{
M ∈ Sn | v′Mv ≥ 0 ∀ v ∈ R

n
}

(2.3.4)

and nonconvex otherwise;

16

2.3. Quadratic Programming

• strictly convex iff its Hessian matrix H is positive definite, i.e.

H ∈ Sn�0 , Sn�0
def
=
{
M ∈ Sn | v′Mv > 0 ∀ v ∈ R

n \ {
�
}
}
. (2.3.5)

�

According to Theorem 2.2, all QPs arising within the linear MPC context have a positive

definite Hessian matrix. Thus we make the standing assumption that from now on all QPs

are strictly convex, unless stated otherwise. This also implies that all QPs are bounded

from below because of the following

Lemma 2.1 (boundedness of strictly convex QPs): Every strictly convex quadratic pro-

gram of the form (2.3.1) is bounded from below. �

Proof: If we omit the constraints it is obvious from standard calculus that the unconstrained

QP (F = R
n) has exactly one global minimiser at x̌

def
= −H−1g. Since the optimal objective

function value cannot decrease when the feasible set is made smaller, i.e. F ⊂ R
n, we can

choose α
def
= 1

2 x̌
′Hx̌+ x̌′g as a lower bound on all objective function values of the original

QP. �

This also shows that a strictly convex quadratic program always has a solution if it is

feasible:

Theorem 2.3 (Frank-Wolfe Theorem): If a quadratic program (2.3.1) is bounded from

below on a nonempty feasible set F (as defined in (2.3.2)), then the objective function

attains its infimum on F , i.e.

∃xopt ∈ F :
1

2
xopt′Hxopt + xopt′g ≤

1

2
x̌′Hx̌+ x̌′g ∀ x̌ ∈ F . (2.3.6)

�

Proof: If F is compact this is true for any continuous objective function. A proof for the

general case can be found in the appendix of [35]. �

Duality is an important concept in linear programming that can also be extended to convex

quadratic programming [27] (and also to general nonlinear programming [89]): the main

idea is to formulate a second, the dual, problem which can be shown (under mild conditions)

to have the same optimal objective function value as the original, the primal, one. Moreover,

the dual objective function value at any dual feasible point provides a lower bound on the

optimal primal objective function value. These theoretical properties are very helpful when

proving optimality of a certain point and also lead to interesting practical methods for

solving quadratic programs, as will be demonstrated in Chapter 3.

Definition 2.8 (dual quadratic program): We define the dual quadratic program of the

QP (2.3.1) to be the problem

QPdual : max
x∈Rn, y∈Rm

−1
2x

′Hx+ y′b (2.3.7a)

s. t. Hx+ g = G′y , (2.3.7b)

y ≥
�
, (2.3.7c)

17

Chapter 2. Theoretical Background and Motivation

where all quantities are definied as in Definition 2.6.

The notions of feasibility, boundedness and convexity (cf. Definition 2.7) also apply to the

dual QP; its feasible set is defined as

Fdual def
=
{

(x̌, y̌) ∈ R
n | Hx̌+ g = G′y̌, y̌ ≥

� }
, (2.3.8)

accordingly. �

Since an extensive treatment of duality is beyond the scope of this thesis, we only summarise

the main result:

Theorem 2.4 (solution of primal and dual QP): Let a strictly convex primal and the

corresponding dual quadratic program (as defined in Definitions 2.6 and 2.8) be given.

Then the following holds:

(i) If xopt is a solution to QP (2.3.1) then a solution
(
xopt, yopt

)
to QPdual exists.

(ii) If a solution
(
xopt, yopt

)
to QPdual exists then xopt is a solution to QP (2.3.1).

(iii) In either case

1

2
xopt′Hxopt + xopt′g = −

1

2
xopt′Hxopt + yopt′b (2.3.9)

holds. �

Proof: Can be found in [27], where a very similar result for convex QPs was first published

(note that our variant of the second proposition requires the invertibility of H). �

Corollary 2.1 (bounds on the optimal objective function values): Let a feasible, strict-

ly convex primal quadratic program with optimal solution xopt and the corresponding dual

be given (see Definitions 2.6 and 2.8). Then the objective function value of the dual at an

arbitrary feasible point provides a lower bound on the optimal objective function value of

the primal, i.e.

1

2
xopt′Hxopt + xopt′g ≥ −

1

2
x̌′Hx̌+ y̌′b ∀ (x̌, y̌) ∈ Fdual . (2.3.10)

�

Proof: Since the primal QP is feasible and bounded from below (cf. Lemma 2.1) a solution

must exists according to Theorem 2.3. Thus Theorem 2.4 guarantees the existence of an

optimal dual solution
(
xopt, yopt

)
implying

1

2
xopt′Hxopt + xopt′g = −

1

2
xopt′Hxopt + yopt′b ≥ −

1

2
x̌′Hx̌+ y̌′b . (2.3.11)

for all feasible pairs (x̌, y̌). �

Corollary 2.2 (feasibility of primal QP): A strictly convex quadratic program is feasible

if and only if its dual is bounded (from above). �

18

2.3. Quadratic Programming

Proof: If a strictly convex QP is feasible Theorem 2.4(i) ensures the existence of an optimal

solution of its dual. Thus, its dual is bounded from above.

If a strictly convex QP is infeasible Theorem 2.4(ii) implies that its dual cannot possess an

optimal solution. Since its dual is feasible,
(
−H−1g,

�)
is always a feasible point, it must

be unbounded (from above). �

In order to formulate explicit optimality conditions for quadratic programs we need the

following definitions:

Definition 2.9 (active and inactive constraints): Let a feasible quadratic program of

the form (2.3.1) be given. A constraint G′
ix ≥ bi, 1 ≤ i ≤ m, is called active at x̌ ∈ F iff

G′
ix̌ = bi (2.3.12)

holds and inactive otherwise. The (disjoint) index sets

A(x̌)
def
=

{
i ∈ {1, . . . ,m} | G′

ix̌ = bi
}
,

I(x̌)
def
=

{
i ∈ {1, . . . ,m} | G′

ix̌ > bi
}

are called set of active constraints, or more common active set, at x̌ and set of inactive

constraints at x̌, respectively. If xopt is an optimal solution of the quadratic program the

correponding active set A(xopt) is called optimal active set. �

Definition 2.10 (working set): Let a feasible quadratic program of the form (2.3.1) be

given. Then arbitrary index sets

A ⊆ {1, . . . ,m} ,

I
def
= {1, . . . ,m} \ A

are called working set and working set!working set complement, respectively. Their cardi-

nalities are denoted with

nA

def
= |A| ,

nI

def
= |I| . �

Now we can state the following optimality conditions which are special variants of the

general nonlinear case (cf. [54], [57]):

Theorem 2.5 (Karush-Kuhn-Tucker conditions): Let QP (2.3.1) be a strictly convex

and feasible quadratic program. Then there exists a unique xopt ∈ R
n and at least one

working set A ⊆ A(xopt) and a vector yopt ∈ R
m which satisfy the following conditions:

Hxopt −G′
Ay

opt
A

= −g , (2.3.13a)

GAx
opt = bA , (2.3.13b)

GIx
opt ≥ bI , (2.3.13c)

yopt
I

=
�
, (2.3.13d)

yopt
A

≥
�
. (2.3.13e)

19

Chapter 2. Theoretical Background and Motivation

Furthermore,

(i) xopt is the unique global minimiser of the primal QP (2.3.1),

(ii) (xopt, yopt) is an optimal solution of the dual QP (2.3.7).

�

Proof: A proof can be found in any textbook on optimisation, e.g. in [17, p. 244]. �

Note that neither the set A nor the dual solution yopt are necessarily unique. If all rows

of the matrix GA are linearly independent and A is fixed, however, yopt would be uniquely

determined from Eqs. (2.3.13a) and (2.3.13b):

Lemma 2.2 (invertibility of the KKT matrix): Let the Hessian matrix H be positive

definite. Then the so-called KKT matrix

(
H G′

A

GA

�

)

(2.3.14)

is invertible if and only if GA has full row rank. �

Proof: It is obvious that the KKT matrix is singular if GA does not have full row rank. A

straigtforward proof of the other direction can be found in [65, p. 445]. �

If A = A(xopt), the condition that GA has full row rank is called linear independence

constraint qualification (LICQ). Unfortunately, we cannot make this assumption in general

within our algorithm, as we will see in Chapter 4.

2.3.1 Parametric Quadratic Programming

Quadratic programs arising in model predictive control only depend on the current process

state w0. Its (initial) value affects the gradient and the constraint vector but does not

change the Hessian and the constraint matrix, as shown in Theorem 2.2. This is exactly

the situation where parametric quadratic programming can be applied: a (possibly infinite)

sequence of QPs with constant matrices but varying vectors.

Definition 2.11 (parametric quadratic program): The optimisation problem

QP(w0) : min
x∈Rn

1
2x

′Hx+ x′g(w0) (2.3.15a)

s. t. Gx ≥ b(w0) , (2.3.15b)

with H ∈ R
n×n, G ∈ R

m×n, w0 ∈ R
nx and

g(w0)
def
= h+ F ′w0 , (2.3.16a)

b(w0)
def
= l +Ew0 , (2.3.16b)

(with F ∈ R
nx×n, E ∈ R

m×nx , h ∈ R
n, l ∈ R

m) is called a parametric quadratic

program. �

20

2.3. Quadratic Programming

For an arbitrary but fixed w0 we yield an ordinary quadratic program of the form (2.3.1)

and therefore all definitions and results presented so far also carry over to a parametric

quadratic program. But since the gradient vector g(w0) and the constraint vector b(w0)

are both affine functions of the current process state w0, the feasible set (Definition 2.7),

its optimal solution (Theorem 2.5), the set of active and inactive constraints at a certain

point (Definition 2.9) as well as its dual (Definition 2.8) also depend on w0. Therefore

these quantities are written as F(w0), x
opt(w0), A

(
w0, x

opt(w0)
)
, I
(
w0, x

opt(w0)
)
, and

QPdual(w0), respectively—but, for notational convenience, we will sometimes drop this

dependence when it is clear from the context.

Variations of the constraint vector may lead to infeasible QPs for certain values of w0 and

thus we introduce the following

Definition 2.12 (set of feasible parameters): The set

P
def
=
{
w0 ∈ R

nx | F (w0) 6= ∅
}

(2.3.17)

is called set of feasible parameters of a parametric quadratic program. �

It has some special properties which are crucial for the online active set strategy presented

in this thesis:

Theorem 2.6 (convexity and closedness of the set of feasible parameters): The set

of feasible parameters of a parametric quadratic program QP(w0) as defined in Defini-

tion 2.12 is convex6 and closed. �

Proof: In order to prove convexity of P, we have to show: if two arbitrary but fixed

quadratic programs QP
(
w

(1)
0

)
and QP

(
w

(2)
0

)
are feasible, i.e. w

(1)
0 , w

(2)
0 ∈ P, also every

quadratic program QP
(
τw

(1)
0 + (1 − τ)w

(2)
0

)
, τ ∈ [0, 1] ⊂ R, is feasible, which means

τw
(1)
0 + (1− τ)w

(2)
0 ∈ P.

If QP
(
w

(1)
0

)
and QP

(
w

(2)
0

)
are feasible there exist x̌(1), x̌(2) ∈ R

n such that

Gx̌(1) ≥ b
(
w

(1)
0

)
and Gx̌(2) ≥ b

(
w

(2)
0

)

hold. By multiplying these inequalities by τ ∈ [0, 1] and (1 − τ), respectively, and adding

the results together

τGx̌(1) + (1− τ)Gx̌(2) ≥ τb
(
w

(1)
0

)
+ (1− τ)b

(
w

(2)
0

)

is obtained (since both τ and (1− τ) are nonnegative). Substituting Eq. (2.3.16b) yields

G
(
τ x̌(1) + (1− τ)x̌(2)

)
≥
(
τl + (1− τ)l

)
+E

(
τw

(1)
0 + (1− τ)w

(2)
0

)

= b
(
τw

(1)
0 + (1− τ)w

(2)
0

)

which shows τ x̌(1)+(1−τ)x̌(2) ∈ F
(
τw

(1)
0 +(1−τ)w

(2)
0

)
and hence τw

(1)
0 +(1−τ)w

(2)
0 ∈ P.

6See Definition A.1

21

Chapter 2. Theoretical Background and Motivation

Second, we show (similar to [10]) that P is closed, i.e. its complement R
nx \ P is open:

Corollary 2.2 shows that w̌0 ∈ R
nx \ P is equivalent to the unboundedness of QPdual(w̌0).

Moreover,

QPdual(w̌0) unbounded ⇐⇒ ∃ y̌ ∈ R
m : y̌ ≥

�
∧ y̌′b(w̌0) > 0 (2.3.18)

obviously holds. For fixed y̌ ≥
�
, the value y̌ ′0b(w̌0) depends continuously on w̌0 as b(w̌0)

depends affinely on w̌0. Thus, there exists a neighbourhood N (w̌0) of w̌0 such that

y̌′b(ŵ0) > 0 ∀ ŵ0 ∈ N (w̌0) . (2.3.19)

Since w̌0 was arbitrary, this proves that R
nx \ P is open and therefore P is closed. �

The set of feasible parameters P is not only convex and closed but it also can be subdivided

into a special collection of polyhedra7, the so-called critical regions [8]:

Definition 2.13 (critical region): Let a strictly convex parametric quadratic program

QP(w0) with the set of feasible parameters P be given. Moreover, let xopt(w0), w0 ∈ P,

denote its unique optimal (primal) solution and A
(
w0, x

opt(w0)
)

the corresponding active

set (see Definition 2.9). Then, for every index set A ⊆ {1, . . . ,m}, the set

CRA

def
=
{
w0 ∈ P | A = A

(
w0, x

opt(w0)
)}

(2.3.20)

�

is called a critical region of P.

Theorem 2.7 (partition of the set of feasible parameters): For a strictly convex para-

metric quadratic program QP(w0) the following hold:

(i) All closures of critical regions cl (CRAi
) are closed polyhedra7 with pairwise disjoint

interiors.

(ii) The set of feasible parameters P can be subdivided into a finite number of closures

of critical regions:

P =
2m
⋃

i=1

cl (CRAi
) , Ai ⊆ {1, . . . ,m} . (2.3.21)

�

Proof: We only prove this theorem for the situation in which the linear independence

constraint qualification (LICQ) is satisfied for all w0 ∈ P; an extension to the general case

can be found in [60].

(i): Since this first part is trivial for empty critical regions we assume without loss of gener-

ality that CRA 6= ∅ for an arbitrary A ⊆ {1, . . . ,m}. This means that there exists a w0 ∈ P

for which A = A
(
w0, x

opt(w0)
)

is the active set corresponding to an optimal solution xopt

of QP(w0) satisfying the optimality conditions of Theorem 2.5. By substituting

xopt(w0) = H−1G′
Ay

opt
A

(w0)−H
−1g(w0) (2.3.22)

7See Definition A.3

22

2.3. Quadratic Programming

they can be written as

GAH
−1G′

Ay
opt
A

(w0) = bA(w0) +GAH
−1g(w0) , (2.3.23a)

GIH
−1G′

Ay
opt
A

(w0) > bI(w0) +GAH
−1g(w0) , (2.3.23b)

yopt
I

(w0) =
�
, (2.3.23c)

yopt
A

(w0) ≥
�
. (2.3.23d)

Note that the third KKT condition (2.3.13c) is strictly satisfied as A = A
(
w0, x

opt(w0)
)
.

This leads to

yopt
A

(w0) =
(
GAH

−1G′
A

)−1 (
bA(w0) +GAH

−1g(w0)
)
, (2.3.24a)

GIH
−1G′

Ay
opt
A

(w0) > bI(w0) +GAH
−1g(w0) , (2.3.24b)

yopt
I

(w0) =
�
, (2.3.24c)

yopt
A

(w0) ≥
�
, (2.3.24d)

in which GAH
−1G′

A
is invertible because of the LICQ. Finally, by substituting Eqs. (2.3.16a)

and (2.3.16b) we obtain that A is the active set of an optimal solution as long as the

following linear inequalities hold:

(

GIH
−1G′

A

(
GAH

−1G′
A

)−1 (
EA +GAH

−1F ′
)

(2.3.25a)

−
(
EI +GAH

−1F ′
))

w0 > GIH
−1G′

A

(
GAH

−1G′
A

)−1
lA + lI .

(
GAH

−1G′
A

)−1 (
EA +GAH

−1F ′
)
w0 ≥

(
GAH

−1G′
A

)−1
lA . (2.3.25b)

�

Thus, we derived an explicit representation of a (nonempty) critical region CRA. Its closure

with respect to the standard topology of R
nx is obtained by replacing “>” with “≥” in

Eqs. (2.3.25) and is thus a closed polyhedron.

By construction, the strictly convex quadratic program QP(w0) is feasible for every w0 ∈

P which guarantees the existence of an unique optimal solution xopt(w0), according to

Theorem 2.5, and a corresponding unique optimal active set. Therefore, the critical regions

are pairwise disjoint and hence their closures can only overlap at their boundaries.

(ii): Since an optimal active set exists for every w0 ∈ P, the set of feasible parameters P

equals the union of all critical regions. P also equals the union of all closures of critical

regions as it is closed (i.e. P = cl (P), cf. Theorem 2.6). The number of closures of critical

regions is finite because the number of index sets A is 2m.

We will see in Chapter 4 that these facts—namely the convexity of the set of feasible

parameters as well as its partition into closed, convex, polyhedral critical regions—are very

important ingredients for the proposed online active set strategy; they are depicted in

Figure 2.3.1.

The proof of Theorem 2.7 also gives us some insight into the structure of the optimal solu-

tion xopt(w0) of the parametric quadratic program QP(w0). We summarise this important

result in the following

23

Chapter 2. Theoretical Background and Motivation

PSfrag replacements

CRA1

CRA2

CRA3

CRA4

CRA5

CRA6
CRA7

Figure 2.2: Partition of the set of feasible parameters P into critical regions.

Theorem 2.8 (piecewise affine optimal solution): Let a strictly convex parametric

quadratic program QP(w0) and its set of feasible parameters P be given. Then the following

is true:

(i) Its optimal solution is a piecewise affine and continuous function

xopt : P −→ R
n ,

(ii) its optimal objective function value is a piecewise quadratic and continuous function

νopt : P −→ R

w0 7−→
1

2
xopt(w0)

′Hxopt(w0) + xopt(w0)
′g(w0) .

The notion “piecewise” means that there exists a finite partition of P into polyhedral

critical regions such that the restrictions of xopt and νopt to each critical region are affine

or quadratic, respectively. �

Proof: Again, we only prove these results for the situation in which the linear independence

constraint qualification (LICQ) is satisfied for all w0 ∈ P and refer to [60] for an extension

to the general case.

Combining Eqs. (2.3.22) and (2.3.24a) yields an explicit affine representation of xopt(w0)

over each closure of a critical region. Thus, xopt is piecewise affine over P and continuous

over each closure of a critical region. The boundary between two closures of critical regions

belongs to both closed regions and as the optimum is unique, the solution must also be

continuous across these boundaries (see also [8]).

The second part of the theorem follows trivially from the first. �

24

2.3. Quadratic Programming

Continuity of the optimal solution function xopt was already stated by Fiacco [32] in the

context of sensitivity analysis in nonlinear programming; Zafiriou [92] proved that xopt is

piecewise affine in order to obtain stability results. Our formulation which explicitly uses

a polyhedral partition of P was introduced by Bemporad et al. [8] (and refined by Mayne

et Rakovic [60]) in order to derive a practical method for the offline solution of parametric

quadratic programs arising from MPC problems.

2.3.2 Explicit (Offline) Solution of Parametric Quadratic Programs

The third step of Algorithm 2.1 requires the solution of an open-loop optimal control

problem at each sampling instant during the runtime of the controlled process. Although this

task reduces to a simple optimisation problem if the process model (and the constraints) is

linear and the objective function is quadratic, namely a (strictly) convex quadratic program,

it may become computationally prohibitive if very short sampling times are necessary. Thus,

instead of solving each quadratic program during the runtime of the process using a standard

QP solver (see Chapter 3), [8] proposed to solve all possibly occuring QPs beforehand, i.e.

solving the parametric quadratic program QP(w0), and look up the solution when needed.

Theorem 2.8 guarantees that only a finite number of critical regions and the correponding

explicit affine representation of the solution have to be stored, making this explicit, or

“offline”, approach tractable. Since available (online) computing power is very limited (and

memory quite cheap) in most practical applications, explicit model predictive control soon

became very popular among the engineers of the MPC community. We outline the main

concept in Algorithm 2.2.

Skipping technical details, we briefly explain the offline step (0) and the online step (3) of

the explicit linear MPC approach:

The parametric quadratic programm QP(w0), also referred to as “multi-parametric” quad-

ratic program to emphasise that w0 is usually nonscalar, is solved as follows [8]: first,

an arbitrary parameter ŵ0 in the interior of a critical region is determined by solving an

appropriate linear program (LP). Then the quadratic program QP(ŵ0) is solved which

enables the determination of a polyhedral representation {w ∈ P | Âw ≥ b̂} of the critical

region CR
Â

with ŵ0 ∈ CR
Â

as well as an affine representation Ĉw + d̂ of the optimal

solution over CR
Â
. Afterwards, the complement P \ CR

Â
can easily be divided into a

partition of m̂
def
= dim b̂ convex polyhedra P1, . . . ,Pm̂ by successive changes of the defining

inequalities Âiw ≤ b̂i into Âiw > b̂i. Finally, these steps are recursively performed for

P1, . . . ,Pm̂. Further refinements such as reduction of the number of QPs to be solved and

linear dependence handling are decribed in [77], [75].

Step (3) can be implemented straightforward by just checking all polyhedral representations,

i.e. checking if Âw0 ≥ b̂, until the correct critical region is found and then calculating the

optimal solution via Ĉw0 + d̂. Since the number of critical regions may become very large,

[78] proprosed the construction of a binary search tree (however, this idea does not reduce

the offline complexity).

Although the explicit approach sounds quite appealing, it has a main drawback: since the

number of possible critical regions grows exponentially in the number of constraints (up to

2m different active sets) it is limited to low dimensional parameter spaces P, i.e. to process

25

Chapter 2. Theoretical Background and Motivation

models comprising only very few states8. Otherwise the offline computation and storage

requirements as well as the online effort for finding the correct critical region soon become

prohibitively large. A further serious problem in practice is that online tuning becomes

nearly impossible as the offline computation time blows up.

Therefore, several techniques for reducing the offline complexity at the expense of a subop-

timal online performance and slight constraint violations were presented in [7], [51], [78].

The main idea is to combine several “small” critical regions to a “bigger” one. A differ-

ent procedure called partial enumeration is proposed in [68]: although exponentially many

critical regions exist only a very small fraction of them really becomes relevant during the

runtime of the process. Thus, instead of calculating all critical regions, only (a guess of)

this fraction is calculated and stored in a cache. If the critical region of the current QP

belongs to the cache its affine representation of the optimal solution is used. Otherwise,

while applying some suboptimal heuristical control action, the QP is solved online using a

standard QP solver and the corresponding critical region is added to the cache, afterwards.

Algorithm 2.2 (explicit linear model predictive control concept)

input: discrete-time linear open-loop optimal control problem OCPdisc
lin (k0),

sequence of sampling instants t0, t1, . . . , tnsample

output: piecewise defined optimal process inputs uopt : [0, tend] → R
nu

(0) Compute and store an explicit piecewise affine representation of the solution xopt to

the parametric quadratic program QP(w0) (before start of process!).

(1) Set i← 0.

(2) Obtain current process state w0(ti).

(3) (a) Determine a critical region CRAi
such that w0(ti) ∈ CRAi

.

(b) Obtain first optimal process input uk0 = (xopt
1 , . . . , xopt

nu)′ from the explicit affine

representation of xopt over the critical region CRAi
.

(4) Set uopt(t)
def
= uk0 ∀ t ∈ [ti, ti+1] and apply uk0 to the process until ti+1.

(5) if i = nsample − 1:

stop!

else

Set i← i+ 1 and continue with step (2).

8State space dimensions of about five seem to be currently tractable via explicit MPC.

26

Chapter 3

Existing Methods for Solving

Quadratic Programs

Having introduced the explicit, or offline approach for treatment of parametric quadratic

programs, this chapter is devoted to a short summary of existing solution methods for

quadratic programs. All methods to be presented are able to solve quadratic programs

arising in the online context of model predictive control but (almost) none of them was

written with this application in mind. We describe them for two reasons: first, our online

active set strategy is based on the so-called null space based primal active set method and

also inherits some features of the dual active set approach. Second, we will use an active-

set method as comparison in several MPC benchmark tests in Chapters 5 and 6, as such

methods are widely used in practice. Also interior-point methods are briefly mentioned for

completeness.

3.1 Primal Active Set Methods

Let us consider the task of solving a strictly convex quadratic program, as defined in Defi-

nition 2.6. If the inequality constraints which are active at the solution, say A
def
= A(xopt),

are known beforehand this problem reduces to the following equality constrained quadratic

program:

QPec : min
x∈Rn

1
2x

′Hx+ x′g (3.1.1a)

s. t. GAx = bA . (3.1.1b)

Without loss of generality, we assume that the matrixGA has full row rank because otherwise

a suitable linearly independent subset of active constraints could be chosen. If QPec is also

feasible Theorem 2.5 implies the following necessary and sufficient condition for the optimal

solution:
(
H G′

A

GA

�

)(
xopt

−yopt
A

)

=

(
−g

bA

)

. (3.1.2)

Thus, solving QPec becomes equivalent to the solution of a linear system whose matrix is

invertible, according to Lemma 2.2. Since this is an rather trivial task active set methods

27

Chapter 3. Existing Methods for Solving Quadratic Programs

aim at reducing a QP (2.3.1) to a QPec (3.1.1) by identifying (a suitable subset of) the

optimal active set. An early active set algorithm for (general) quadratic programs was given

in [33]. The basic idea is indeed much older since also the famous simplex method [22]

for linear programming can be interpreted as specialised active set method (see e.g. [41]);

and the first implementations for the solution of quadratic programs were extensions of the

simplex method [88], [22].

Primal active set methods start with a feasible point x(0) (if such a point exists) and a

working set A
(0) ⊆ A(x(0)) which serves as an initial guess for the optimal active set.

Then a sequence of feasible iterates x(k) and correponding working sets A
(k), k ≥ 0, are

determined: assuming that A
(k) is indeed an optimal working set, the next iterate

x(k+1) def
= x(k) + ∆x(k) (3.1.3)

is the optimal solution if and only if it solves Eq. (3.1.2):

(
H G′

A(k)

G
A(k)

�

)(

x(k+1)

−y
(k+1)

A(k)

)

=

(
−g

b
A(k)

)

(3.1.4)

⇐⇒

(
H G′

A(k)

G
A(k)

�

)(

∆x(k)

−y
(k+1)

A(k)

)

= −

(
Hx(k) + g

�

)

. (3.1.5)

The reason why system (3.1.5) is solved, instead of (3.1.4), is that A
(k) is only a guess for

the optimal active set. Thus, when moving from x(k) to x(k+1) along ∆x(k) it may happen

that an inactive constraint becomes violated which renders x(k+1) infeasible. In order to

avoid this (primal) infeasibility, the next iterate x(k+1) is chosen as

x(k+1) def
= x(k) + τ (k)∆x(k) , τ (k) ∈ R≥0 (3.1.6a)

with

τ (k) def
= min

{

1, min
i/∈A(k)

{

bi −G
′
ix

(k)

G′
i∆x

(k)

∣
∣
∣ G′

i∆x
(k) < 0

}}

. (3.1.6b)

This choice of τ (k) ensures that

G
I(k)
x(k+1) = G

I(k)
x(k) + τ (k)G

(k)

I(k)
∆x(k) ≥ b

I(k)
, I

(k) def
= {1, . . . ,m} \ A

(k) (3.1.7)

holds, while G
A(k)x(k+1) = b

A(k) is guaranteed by the choice of ∆x(k) (cf. Eq. (3.1.4)).

If Eq. (3.1.6b) leads to τ (k) < 1 the constraint which caused this limitation of τ (k)—the

so-called blocking constraint—is added to the working set, yielding the next working set

A
(k+1), and the next iterate is determined in the above mentioned manner.

If there is no blocking constraint, i.e. τ (k) = 1, a full step is taken implying that the optimal

solution of the quadratic program (2.3.1) is found provided that A
(k) is really the optimal

active set. We can check this by looking at the dual solution vector y
(k+1)

A(k) : if the unique op-

timal solution x(k) of QPec subject to the equality constraints G
A(k)x(k) = b

A(k) is found the

next step direction ∆x(k+1) must be zero. Therefore Eq. (3.1.5) shows that the first op-

timality condition (2.3.13a) of Theorem 2.5 is satisfied. Moreover, conditions (2.3.13b)

and (2.3.13c) are fulfilled by construction; condition (2.3.13d) can be met by setting

28

3.1. Primal Active Set Methods

y
(k+1)

I(k)

def
=

�
. Thus, according to the last optimaltiy condition (2.3.13e), the current iterate

x(k+1) = x(k) is indeed optimal for the inequality constraint quadratic program (2.3.1) if

and only if each component of y
(k+1)

A(k) is nonnegative. If this is the case we have found

the optimal solution of (2.3.1), otherwise we drop one the constraints corresponding to a

negative component of y
(k+1)

A(k) from the current working set and proceed with determing a

new step direction ∆x(k+1), again1.

A formal summary of the primal active set method is given in Algorithm 3.1 (cf. [65]):

Algorithm 3.1 (primal active set method)

input: strictly convex quadratic program QP of the form (2.3.1),

initial guesses for solution x(0) and optimal active set A
(0) (both optional)

output: optimal solution xopt of QP and working set A as defined in Theorem 2.5

(or message that QP is infeasible)

(1) Set k ← 0 and obtain feasible starting point x(0) and working set A
(0) ⊆ A(x(0)).

If such a point does not exists: stop (QP infeasible)!

(2) Calculate ∆x(k) and y
(k+1)

A(k) from Eq. (3.1.5).

(3) if ∆x(k) =
�
:

if y
(k+1)

A(k) ≥
�
:

Optimal solution of QP found: set xopt ← x(k) and A← A
(k). stop!

else

Drop a constraint j ∈ A
(k) with y

(k+1)
j < 0 from working set,

i.e. A
(k+1) ← A

(k) \ {j}, and continue with step (2).

(4) Compute step length τ (k) via Eq. (3.1.6b) and set x(k+1) ← x(k) + τ (k)∆x(k).

(5) if τ (k) < 1:

Add a blocking constraint j = arg min
i/∈A(k)

bi−G′

ix
(k)

G′

i∆x
(k) to working set,

i.e. A
(k+1) ← A

(k) ∪ {j}.

else

Set A
(k+1) ← A

(k).

(6) Set k ← k + 1 and continue with step (2).

1It can be shown, see e.g. [65, p. 459–461], that the dropped constraint remains satisfied along the new

step direction ∆x(k+1).

29

Chapter 3. Existing Methods for Solving Quadratic Programs

Some steps of Algorithm 3.1 need further attention:

Initialisation: If no feasible starting point is given by the user the algorithm has to find one

in the first step, also known as Phase I (see e.g. [34]). The idea is to formulate an auxiliary

(linear) problem for which a feasible point is known and whose solution delivers a feasible

starting point for the original problem. For our QP formulation such a phase I, or feasibility,

problem can be the following

min
p∈R

mp , x∈Rn

� ′p (3.1.8a)

s. t. G+x+ p ≥ b+ , (3.1.8b)

G−x ≥ b− , (3.1.8c)

p ≥
�
, (3.1.8d)

where (3.1.8b) describes a relaxation of the mp, 0 ≤ mp ≤ m, constraints with positive

components of the constraint vector, i.e. b+ >
�
, and (3.1.8c) describes the (m − mp)

constraints with nonpositive components of the constraint vector, i.e. b− ≤
�
. Then the

choice

x(0) def
=

�
, p(0) def

= b+ (3.1.9)

is obviously a feasible point for the auxiliary problem (3.1.8). Furthermore, the original

problem (2.3.1) is feasible if and only if the auxiliary problem has an optimal objective value

of 0. If that is the case all components of p must be zero and the remaining optimisation

variables x form a feasible starting point for the quadratic program (2.3.1). The initial

working set can be chosen as a (linearly independent) subset of the active constraints at

the starting point.

According to [45], “computational experience indicates that, unless a feasible point is avail-

able, on the average between one-third to one-half of the total effort required to solve a

QP is expended in phase I.” If, as in model predictive control, a sequence of neighbouring

QPs is to be solved optimal solution and corresponding working set of the last QP can be

used to initialise a primal active set solver. This warm start idea not only can save the

phase I but also may reduce the number of iterations significantly. But due to changes

of the constraint vector the former solution may become infeasible which makes a phase I

neccessary and thus ruins the possible benefit of warm starts.

Dropping a constraint: If several active constraints correspond to a negative component of

the dual solution vector in step (3) the question arises: which one should be removed from

the working set? A common choice is to select the constraint

j = arg min
i∈A(k)

y
(k)
i . (3.1.10)

It “works quite well” [34] in practice “but has the disadvantage that it is susceptible to the

scaling of the constraints.” [65]

Linear independence of active constraints: The theoretical derivation of the primal active

set algorithm is based on the assumption that matrix G
A(k) has full row rank at each

iteration k ≥ 0. Provided that a linearly independent intial working set A
(0) is chosen, this

assumption can only be violated when a constraint is added to working set in step (5), as

the deletion of a row cannot lead to rank deficiency. Since the step direction is chosen such

30

3.1. Primal Active Set Methods

that all active constraints remain satisfied for all step lengths no constraint which is linearly

dependent from them can become a blocking constraint, and thus cannot be added to the

working set.

However, there may be points at which the active set is linearly dependent, so-called

degenerated points. At such points successive deletion and addition of constraints with

zero step size in between can happen (each leaving the working set linearly independent).

And it may be that the sequence of working sets obtained be deleting and adding constraints

at such a degenerate point repeats itself after finitely many steps, a phenomenon known

as cycling . “Fortunately, the occurence of cycling is rare” and “simple heuristic strategies

almost always succeed in breaking the deadlock” [42]. In contrast, [65] states that “most

QP implementations simply ignore the possibility of cycling.”

Finally, we want to mention that Algorithm 3.1 terminates after a finite number of iterations

at the optimal solution of a strictly convex and feasible quadratic program (2.3.1) provided

that no cycling occurs (cf. [65, p. 466–467]).

In the next two subsections we will have a closer look at how to solve system (3.1.5)

efficiently.

3.1.1 Null Space Method

Solving system (3.1.5) can be interpreted as solving an equality constrained, strictly convex

quadratic program similar to QPec (see [38]):

min
∆x(k)∈Rn

1
2∆x(k)′H∆x(k) + ∆x(k) ′(Hx(k) + g) (3.1.11a)

s. t. G
A(k)∆x(k) =

�
. (3.1.11b)

The equality constraint implies that a point is feasible if and only if it lies completely in

the null space2 of the active constraints matrix G
A(k) . So, if Z(k) ∈ R

n×(n−nA) is a matrix

whose columns form a basis of the null space of G
A(k) , i.e. G

A(k)Z(k) =
�
, every feasible

point can be written as

∆x(k) = Z(k)∆x
(k)
Z , ∆x

(k)
Z ∈ R

n−nA . (3.1.12)

A null space basis matrix Z (k) can be obtained by calculating a QR factorisation3 of G′
A(k) :

(

Y (k) Z(k)
)(U (k)

�

)

def
= V (k)

(
U (k)

�

)

= G′
A(k) , (3.1.13)

where V (k) ∈ R
n×n is an orthonormal and U (k) ∈ R

nA×nA an upper triangular matrix;

Y (k) ∈ R
n×nA and Z(k) ∈ R

n×(n−nA) are orthonormal matrices containing bases of the

range and the null space of G
A(k) , respectively.

Substituting Eq. (3.1.12) into (3.1.11) leads to the following unconstrained quadratic prob-

lem:

min
∆x(k)

1
2∆x

(k)
Z

′Z(k)′HZ(k)∆x
(k)
Z + ∆x

(k)
Z

′Z(k)′
(
Hx(k) + g

)
(3.1.14)

2See Definition A.4.
3See Theorem A.2.

31

Chapter 3. Existing Methods for Solving Quadratic Programs

whose solution is

∆x
(k)
Z = −

(

Z(k)′HZ(k)
)−1

Z(k)′
(

Hx(k) + g
)

(3.1.15a)

⇐⇒ R(k) ′R(k)∆x
(k)
Z = −Z(k)′

(

Hx(k) + g
)

. (3.1.15b)

ThereinR(k)′R(k) is the Cholesky decomposition4 of the projected Hessian matrix Z (k)′HZ(k),

with an upper triangular matrix R(k) ∈ R
(n−nA)×(n−nA). Its existence is guaranteed by the

positive definiteness of H and the fact that the basis matrix Z (k) has full column rank.

Since R(k) is an upper triangular matrix, Eq. (3.1.15b) is easily solved via a forward and a

backward substitution.

Then the associated dual solution vector can be obtained as

H∆x(k) −G′
A(k)y

(k+1)

A(k) = −
(

Hx(k) + g
)

(3.1.16a)

⇐⇒ y
(k+1)

A(k) =
(
G

A(k)G′
A(k)

)−1
G

A(k)

(

HZ(k)∆x
(k)
Z +Hx(k) + g

)

, (3.1.16b)

⇐⇒ U (k)y
(k+1)

A(k) = Y (k)
(

HZ(k)∆x
(k)
Z +Hx(k) + g

)

, (3.1.16c)

where G
A(k)G′

A(k) is invertible because G
A(k) has full row rank. Eq. (3.1.15b) can be solved

via a backward substitution as U (k) is an upper triangular matrix.

The null space method uses Eqs. (3.1.15b) and (3.1.16c) to calculate the solution of the

KKT system (3.1.5); the matrix factorisations are introduced in order to calculate a null

space basis matrix, which greatly simplifies the calculation of y
(k+1)

A(k) , and to avoid explicitly

inverting the projected Hessian matrix. Inverting the projected Hessian matrix as well as

calculating the matrix factorisations from scratch requires O(n3) floating-point operations.

So, the factorisations seem to be of limited use as they change whenever a constraint

is added to or deleted from the working set. But because of the simple nature of these

changes, update schemes for Cholesky and QR decomposition were described in [36], [44],

[21] which reduce the effort to obtain the changed factorisations to O(n2). Thus, also the

number of floating-point operations for solving the KKT system only grows quadratically in

the number of optimisation variables. We will discuss these matrix updates in more detail

in Section 4.3.3 as our online active set strategy is based on the null space approach and

also makes use of them.

Two well-known implementations of the null space method for quadratic programming are

qpsol [62] and qpopt [63]. We also note that the null space method is applicable as long

as the projected Hessian is positive definite, which not necessarily requires the Hessian

matrix to be positive definite; an extension to indefinite quadratic programs is described

in [40]. Furthermore, since Z (k) is chosen orthonormal, the condition number5 of the

projected Hessian is the same as that of the Hessian itself. This makes the null space

method numerically more stable than the range space method, which we present next.

4See Theorem A.1.
5See Definition A.1.

32

3.2. Dual Active Set Methods

3.1.2 Range Space Method

Assuming the Hessian matrix H to be positive definite, the KKT system (3.1.5) can also

be solved by calculating the inverse of the KKT matrix explicitly:

(
H G′

A(k)

G
A(k)

�

)(
H−1 −H−1G′

A(k)W
(k)G

A(k)H−1 H−1G′
A(k)W

(k)

W (k)G
A(k)H−1 −W (k)

)

= Id , (3.1.17)

where W (k) def
=
(

G
A(k)H−1G′

A(k)

)−1
∈ R

nA×nA . Exploiting common subexpressions leads

to the following solution formulae for system (3.1.5):

y
(k+1)

A(k) = W (k)G
A(k)H−1

(

Hx(k) + g
)

, (3.1.18a)

∆x(k) = H−1G′
A(k)y

(k+1)

A(k) −H
−1
(

Hx(k) + g
)

(3.1.18b)

=
(

H−1G′
A(k)W

(k)G
A(k)H−1 −H−1

)(

Hx(k) + g
)

. (3.1.18c)

This representation of the solution is called range space approach because the Hessian

matrix is projected to the range space of the active constraints. This form has the disad-

vantage that the condition number of G
A(k)H−1G′

A(k) is that of the Hessian multiplied with

the squared condition number of G′
A(k) , which renders the range space method inappropri-

ate if the active constraints matrix is ill-conditioned; the same holds if the Hessian matrix

H is nearly singular.

On the other hand, this approach becomes attractive if the Hessian matrix is easy to invert

and the number of constraints in the working set remains small. This is in contrast to the

null space approach where the dimension of the projected Hessian Z (k)′HZ(k), and thus

the number of correponding linear algebra operations, decreases with the number of active

constraints.

Eqs. (3.1.18) are not directly applied to calculate the primal step direction and the dual

solution vector, instead, as in the null space method, matrix factorisations are used. [37] pro-

posed a Cholesky decomposition of H

H = R′R , R ∈ R
n×n upper triangular, (3.1.19)

and a QR factorisation of G
A(k)R−1. These factorisations are updated in each iteration as

explained in [36], [44], [21].

3.2 Dual Active Set Methods

In this section we give a short description of dual active set methods which have some

similarities to our proposed online active set strategy. While primal active set solvers start

at a primal feasible point and produce a sequence of primal feasible iterates, dual active set

methods maintain dual feasibility until an iterate becomes also primal feasible, and hence

optimal. This approach is equivalent to solving the dual of the quadratic program QPdual

(see Definition 2.8) with a primal active set solver (cp. [34]). We present the famous dual

active set method by Goldfarb and Idnani [50], [45] which is applicable to strictly convex

quadratic programs. For an extension to convex QPs we refer to [16].

33

Chapter 3. Existing Methods for Solving Quadratic Programs

One motivation for developing dual QP methods is the trivial but important observation

that the pair
(
x(0), y(0)

) def
=
(
−H−1g,

�)
∈ Fdual (3.2.1)

can serve as a dual feasible starting point for solving QPdual (with an empty working set

A
(0)). Thus, besides this computationally cheap matrix-vector calculation, no Phase I is

necessary!

In the following we divide the dual vector y(k) into an active part y
(k)

A(k) and an inactive part

y
(k)

I(k)
, where I

(k) def
= {1, . . . ,m} \ A

(k) is the working set complement (note that I
(k) may

contain currently violated constraints). After obtaining
(
x(0), y

(0)

A(0)

)
= x(0), it is checked if

this point is also primal feasible, i.e. if Gx(0) ≥ b is satisfied. In this case the unconstrained

minimum x(0) is already the optimal solution. Otherwise a violated (primal) constraint, say

G′
qx

(0) < bq with 1 ≤ q ≤ m, is selected which shall be satisfied (with equality) by the next

iterate
(
x(1), y

(1)

A(1)

)
. More generally, at iteration k we want to perform a step in the primal

and the dual variables such that a violated constraint q /∈ A
(k) becomes active, and hence

feasible, at iteration k + 1:

x(k+1) def
= x(k) + τ∆x(k) , (3.2.2a)

y
(k+1)

A(k+1)∪{q}

def
= P








y

(k)

A(k)

y
(k)
q



+ τ

(

∆y
(k)

A(k)

1

)

 (3.2.2b)

for an arbitrary k ∈ N ∪ {0} and a fixed τ ∈ R≥0—the definition of the next working set

A
(k+1) and the projection matrix P will be introduced soon. Note that the component

of the dual vector correponding to the qth constraint y
(k)
q does not need to be zero as

constraint q is not feasible. The step directions are determined as follows:

∆x(k) def
=

(

H−1G′
A(k)W

(k)G
A(k)H−1 −H−1

)

G′
q , (3.2.3a)

∆y
(k)

A(k)

def
= −W (k)G

A(k)H−1G′
q . (3.2.3b)

Therein ∆x(k) is chosen such that all (primal) constraints in the working set A
(k) remain

active, cf. Eqs. (3.1.18) of the primal range-space method. The primal-dual step length

τ should be the minimum step length in the primal variables such that the qth constraint

becomes feasible (i.e. active); on the other hand τ must be small enough to maintain

feasibility of the dual variables:

τprim def
=







∞ if ∆x(k) =
�

G′

qx
(k)−bq

G′

q∆x(k) else
, (3.2.4a)

τdual def
= min

i∈A(k)

{

−
y

(k)

A(k)

∆y
(k)
i

∣
∣
∣ ∆y

(k)
i < 0

}

, (3.2.4b)

τ
def
= min

{

τprim, τdual
}

, (3.2.4c)

where the minimum over an empty set is defined as ∞, which is greater than any real

number.

34

3.2. Dual Active Set Methods

If the primal step direction ∆x(k) is not zero a primal-dual step is taken, trying to make

the qth constraint active while maintaining dual feasibility. Two cases can occur:

1. τ = τprim: A full step in the primal variables can be taken, q is added to the

working set. This means that A
(k+1) def

= A
(k) ∪ {q} and P

def
= Id|A(k+1)| is chosen in

Eq. (3.2.2b).

2. τ = τdual: Only a partial step can be taken as the blocking constraint

j
def
= arg min

i∈A(k)

{

−
y

(k)

A(k)

∆y
(k)
i

∣
∣
∣ ∆y

(k)
i < 0

}

(3.2.5)

must be dropped from the working set in order to keep dual feasibility; constraint

q remains infeasible. Thus, in Eq. (3.2.2b), A
(k+1) def

= A
(k) \ {j} is defined and

P
def
= Pj deletes component y

(k)
j from the right hand side vector (i.e. Pj equals the

∣
∣A

(k) + 1
∣
∣×
∣
∣A

(k) + 1
∣
∣ identity matrix from which one row is deleted).

If the primal step direction ∆x(k) is zero the qth constraint cannot be satisfied while all

other (primal) constraints in A(k) remain active. Thus, no primal step is taken in this case.

Instead, provided that τ dual < ∞, a partial dual step is performed which annihilates one

component of ∆y
(k+1)

A(k) and allows to drop the corresponding active constraint from the

working set (A(k+1) and P
def
= Pj as in the second case above). If such a constraint does

not exist, i.e. τ = τdual =∞, the quadratic program is infeasible.

After a partial step new step directions ∆x(k+1), ∆y
(k+1)

A(k+1) are determined for the updated

working set A
(k+1) and constraint q is tried to made active, i.e. feasible, again. As soon as

a full step can be taken (if the quadratic program is feasible this must occur if the working

set is empty, at the latest), a new violated constraint q is chosen and the whole procedure

is repeated. If no violated constraint can be found the primal and dual feasible solution
(
xopt, yopt

)
of QPdual is found, which also delivers the solution xopt of the corresponding

QP. We formalise this dual active set method in Algorithm 3.2 (cf. [45]).

It should be mentioned that a violated constraint q which became active may become

inactive and afterwards violated again; the choice of the step directions only ensures that

active constraints remain active. But since it can be shown that the (primal) objective

function value strictly decreases in every iteration—provided that no cycling due to primal

degeneracy occurs, see page 31—finite termination of Algorithm 3.2 is guaranteed [45].

The step direction computations in Eqs. (3.2.3) are very similar to that of the range-space

method (cf. Section 3.1.2) and similar matrix factorisations and formulae for matrix updates

after a working set change exist. Therefore, also recalling that there is no necessity of a

phase I, dual methods can be implemented rather efficiently.

A recent implementation particularly suited for large-scale, sparse Hessian and constraint

matrices is QPSchur [3]. It is based on a third possibility for solving the KKT sys-

tem (3.1.2), the so-called Schur complement (see e.g. [41]).

35

Chapter 3. Existing Methods for Solving Quadratic Programs

Algorithm 3.2 (dual active set method)

input: strictly convex quadratic program QP

output: optimal solution xopt of QP and working set A as definied in Theorem 2.5

(or message that QP is infeasible)

(1) Set k ← 0, obtain feasible starting point
(
x(0), y(0)

) def
=
(
−H−1g,

�)
and correspond-

ing working set A
(0) def

= ∅.

(2) Choose a violated constraint q ∈
{
i /∈ A

(k)
∣
∣ G′

ix
(k) < bi

}
. If such a constraint does

not exist the optimal solution is found: set xopt ← x(k) and A← A
(k). stop!

(3) Calculate primal and dual step directions ∆x(k) and ∆y
(k)

A(k) from Eqs. (3.2.3).

(4) Compute step length τ (and τ prim, τdual) via Eqs. (3.2.4).

(5) if ∆x(k) =
�
:

if τdual =∞:

stop (QP infeasible)!

else (τdual <∞)

Remove blocking constraint j = arg min
i∈A(k)

{

− y(k)

∆y
(k)
i

∣
∣
∣ ∆y

(k)
i < 0

}

from working

set, i.e. A
(k+1) ← A

(k) \ {j}.

Set x(k+1) ← x(k), y
(k+1)

A(k+1)∪{q}
← Pj

((
y
(k)

A
(k)

y
(k)
q

)

+ τ
(

∆y
A
(k)

1

))

as well as k ← k + 1 and continue with step (3).

(6) if τ = τprim:

Add the formerly violated constraint q to the working set, i.e. A
(k+1) ← A

(k)∪{q}.

Set x(k+1) ← x(k) + τ∆x(k), y
(k+1)

A(k+1) ←

(
y
(k)

A
(k)

y
(k)
q

)

+ τ
(

∆y
A
(k)

1

)

as well as k ← k + 1 and continue with step (2).

else (τ = τdual)

Remove blocking constraint j = arg min
i∈A(k)

{

− y(k)

∆y
(k)
i

∣
∣
∣ ∆y

(k)
i < 0

}

from working

set, i.e. A
(k+1) ← A

(k) \ {j}.

Set x(k+1) ← x(k), y
(k+1)

A(k+1)∪{q}
← Pj

((
y
(k)

A(k)

y
(k)
q

)

+ τ
(

∆y
A(k)

1

))

as well as k ← k + 1 and continue with step (3).

36

3.3. Interior Point Methods

3.3 Interior Point Methods

So-called primal-dual interior point methods have emerged as a strong competitor to active

set methods. Initially developed for linear programming, they were extended to convex

quadratic programming and to general nonlinear programming afterwards. Since a detailed

description is beyond the scope of this thesis we refer to [91] for an overview. The main idea

can be summarised as follows: first observe that the KKT optimality conditions (2.3.13)

imply that a primal-dual pair
(
x(k), y(k)

)
, k ≥ 0, is optimal if and only if

Hx(k) −G′y(k) = −g , (3.3.1a)

Gx(k) ≥ b , (3.3.1b)

y(k) ≥
�
, (3.3.1c)

y
(k)
i

(

Gx(k) − b
)

i
= 0 ∀ i ∈ {1, . . . ,m} . (3.3.1d)

Interior-point methods relax the so-called complementary slackness condition (3.3.1d) to

y
(k)
i

(

Gx(k) − b
)

i
= µ(k) ∀ i ∈ {1, . . . ,m} (3.3.1d’)

for some µ(k) ∈ R>0 and produce a sequence of iterates
(
x(k), y(k)

)
which strictly satisfy

Eqs. (3.3.1b) and (3.3.1c). The optimal primal-dual solution is finally found by ensuring

µ(k) → 0 for k →∞.

One famous implementation for convex quadratic programs is LOQO [81]; another one for

general NLPs is Ipopt [82]. For interior point methods, a polynomial runtime guarantee

can be given and they posses relatively constant computational demands. But they suffer

the drawback that no efficient warm start techniques exist so far. “For large QPs with

many active inequality constraints the interior point approach is expected to require far

fewer iterations than an active set method to arrive at the solution. However, each of the

interior points iterations is many times more expensive than the iterations performed in an

active set method.” [4].

Interior-point methods have also been proposed for use in model predictive control [73].

Comparisions with active set solvers indicate that it depends on the problem’s characteristics

which method should be preferred [5], [4].

37

38

Chapter 4

An Online Active Set Strategy for

Model Predictive Control

4.1 Main Idea

Inspired by the explicit solution approach, but aiming to avoid its prohibitive offline compu-

tational cost, we propose an online active set strategy for use in model predictive control.

It builds on the expectation that the active set does not change much from one quadratic

program to the next, but is different from conventional warm starting techniques. For

transition from the old QP to a new one, we propose to move on a straight line in the

parameter space, i.e., in the set P. As this set is convex, cf. Theorem 2.6, we can be

sure that all QPs on this line remain feasible and can be solved. As long as we stay in one

critical region, the QP solution depends affinely on w0. If we have to cross the boundaries

of critical regions during our way on the line, which is illustrated in Fig. 4.1, Theorem 2.8

ensures that the solution can be continuously continued.

Let us assume that we have solved a parametric quadratic program of the form (2.3.15)

for a certain initial state w0 and (after one sampling time) want to solve it again for a new

initial state vector wnew
0 with unknown solution

(
xopt

new, y
opt
new

)
. By setting

∆w0
def
= wnew

0 − w0 , (4.1.1a)

∆g
def
= g(wnew

0)− g(w0) = F ′∆w0 , (4.1.1b)

∆b
def
= b(wnew

0)− b(w0) = E∆w0 , (4.1.1c)

we can re-parameterise gradient and right hand side vector as follows:

w̃0 : [0, 1]→ R
nx, w̃0(τ)

def
= w0 + τ∆w0 , (4.1.2a)

g̃ : [0, 1]→ R
n, g̃(τ)

def
= g(w0) + τ∆g , (4.1.2b)

b̃ : [0, 1]→ R
m, b̃(τ)

def
= b(w0) + τ∆b . (4.1.2c)

This leads to a re-parameterised form of QP(w0):

QP(τ) : min
x

1
2x

′Hx+ x′g̃(τ) (4.1.3a)

s. t. Gx ≥ b̃(τ) . (4.1.3b)

39

Chapter 4. An Online Active Set Strategy for Model Predictive Control

According to our assumption, we know the solution xopt and yopt (and a corresponding

working set A) of QP(w0) and want to solve QP(wnew
0). The basic idea of our online

active set strategy, which has previously been proposed by [11] in a different context, is

to move from w0 towards wnew
0 , and thus from

(
xopt, yopt

)
towards

(
xopt

new, y
opt
new

)
, while

keeping primal and dual feasibility (i.e. optimality) for all intermediate points. This means

that we are looking for homotopies

x̃opt : [0, 1]→ R
n, x̃opt(0) = xopt, x̃opt(1) = xopt

new , (4.1.4a)

ỹopt : [0, 1]→ R
m, ỹopt(0) = yopt, ỹopt(1) = yopt

new , (4.1.4b)

Ã : [0, 1]→
� {1,...,m}, Ã(0) = A, Ã(τ) ⊆ {1, . . . ,m} , (4.1.4c)

Ĩ : [0, 1]→
� {1,...,m}, Ĩ(τ)

def
= {1, . . . ,m} \ Ã(τ) , (4.1.4d)

which satisfy the conditions of Theorem 2.5 at every point τ ∈ [0, 1]:

(

H G′
Ã(τ)

G
Ã(τ)

�

)(

x̃opt(τ)

−ỹopt

Ã(τ)
(τ)

)

=

(

−g̃(τ)

b̃
Ã(τ)(τ)

)

, (4.1.5a)

G
Ĩ(τ)x̃

opt(τ) ≥ b
Ĩ(τ)(τ) , (4.1.5b)

ỹopt

Ĩ(τ)
(τ) =

�
, (4.1.5c)

ỹopt

Ã(τ)
(τ) ≥

�
. (4.1.5d)

This implies that x̃opt(τ) and ỹopt(τ) are piecewise linear functions and that x̃opt(τ) is also

continuous, as shown in Theorem 2.8. Thus, locally we must have a relation of the form

x̃opt(τ)
def
= xopt + τ∆xopt , (4.1.6a)

ỹopt

Ã(τ)

def
= yopt

A
+ τ∆yopt

A
, (4.1.6b)

which holds for sufficiently small τ ∈ [0, τmax], τmax ∈ R≥0.

Because we start from an optimal solution we know that conditions (4.1.5) are satisfied at

τ = 0. Therefore equality (4.1.5a) is satisfied for all τ ∈ [0, τmax] if and only if

(
H G′

A

GA

�

)(
∆xopt

−∆yopt
A

)

=

(
−∆g

∆bA

)

(4.1.7)

holds. Because it will be ensured that all rows of GA are linearly independent, Eq. (4.1.7)

has a unique solution, as shown in Lemma 2.2.

The active set stays constant as long as no previously inactive constraint becomes active

(cf. (4.1.5b)), i.e.

G′
i

(
xopt + τ∆xopt

)
= bi(w0) + τ∆bi (4.1.8)

for some i ∈ Ĩ(0), and no previously active constraint becomes inactive (cf. (4.1.5d)), i.e.

yopt
i + τ∆yi = 0 (4.1.9)

40

4.1. Main Idea

PSfrag replacements w0

wnew
0

Figure 4.1: Homotopy paths from one QP to the next across multiple critical regions.

for some i ∈ Ã(0). Therefore, we determine the maximum possible homotopy step length

τmax as follows1:

τprim
max

def
= min

i∈Ĩ(0)

{
bi(w0)−G

′
ix

opt

G′
i∆x

opt −∆bi

∣
∣
∣ G′

i∆x
opt < ∆bi

}

∈ R≥0 , (4.1.10a)

τdual
max

def
= min

i∈Ã(0)

{

−
yopt
i

∆yi

∣
∣
∣ ∆yi < 0

}

∈ R≥0 , (4.1.10b)

τmax
def
= min

{

1, τprim
max , τ

dual
max

}

∈ [0, 1] . (4.1.10c)

This choice of τmax ensures that conditions (4.1.5b) and (4.1.5d) remain fulfilled. Moreover,

if we define ∆yopt
I

def
=

�
then also equality (4.1.5c) holds for all τ ∈ [0, τmax].

Our online active set strategy is summarised in Algorithm 4.1 (where the homotopy interval

[0, 1] is implicitly rescaled after each working set change, for notational simplicity and

implementation elegance).

1Again, the minimum over an empty set is defined as ∞.

41

Chapter 4. An Online Active Set Strategy for Model Predictive Control

Algorithm 4.1 (online active set strategy)

input: data and solution
(
xopt, yopt

)
of QP(w0),

corresponding working set A,

new parameter wnew
0 ∈ P

output: solution pair
(

xopt
new, y

opt
new

)

of QP(wnew
0),

corresponding working set A
new

(1) Calculate ∆w0, ∆g and ∆b via Eqs. (4.1.1).

(2) Calculate primal and dual step directions ∆xopt and ∆yopt via Eq. (4.1.7).

(3) Determine maximum homotopy step length τmax from Eqs. (4.1.10).

(4) Obtain optimal solution of QP(w̃0):

(a) w̃0 ← w0 + τmax∆w0,

(b) x̃opt ← xopt + τmax∆x
opt,

(c) ỹopt ← yopt + τmax∆y
opt.

(5) if τmax = 1:

Optimal solution of QP(wnew
0) found.

Set xopt
new ← x̃opt, yopt

new ← ỹopt and A
new ← A. stop!

(6) if τmax = τdual
max :

Remove a dual blocking constraint j ∈ A

(

τdual
max = −

yopt
j

∆yj

)

from working set,

i.e. A← A \ {j}.

elseif τmax = τprim
max :

Add a primal blocking constraint j
(

τprim
max =

bj(w0)−G′

jx
opt

G′

j∆x
opt−∆bj

)

to working set,

i.e. A← A ∪ {j}, while ensuring linear independence (see Section 4.5.1).

(7) Set w0 ← w̃0, x
opt ← x̃opt, yopt ← ỹopt and continue with step (1).

42

4.2. Real-Time Variant

4.2 Real-Time Variant

One advantage of our online active set strategy is that it produces a sequence of optimal

solutions for QPs on the homotopy path. Thus, it is possible to interrupt this sequence

after every partial step and start a new homotopy from the current iterate towards the next

QP. In particular, no Phase I as in standard active set methods is neccessary because every

iterate is optimal and therefore feasible. Of course, if we interrupt the homotopy before the

solution is reached we may stop at an infeasible point with respect to the QP we want to

solve.

In a real-time scenario one can try to find the optimal solution of the current QP within

a given sampling time. But if too many working set changes are nessesary to get from

the solution of the old QP to that of the current QP one can just stop the solution of the

current QP and start a new homotopy towards the solution of the new one. If the solution of

the new QP requires fewer working set changes than computable within the given sampling

time the online active set strategy may make up for some unperformed changes from the

last QP. This situation is illustrated in Figure 4.2 wherein only two working set changes are

allowed per QP.

The computational effort per working set change is known rather exactly, see Section 4.6.1.

So, if one obtains an estimate for the number of optimal active set changes from one QP

to the next, e.g. from closed-loop simulations, it is easy to estimate the possible sampling

time length.

PSfrag replacements w0

wnew
0

Figure 4.2: Homotopy paths (solid) from one QP to the next with limited number of working

set changes.

Note that our online active set strategy has some features similar to the dual active set

method, see Section 3.2, and its adaptation to fast MPC [84]: both allow QP warm starting

43

Chapter 4. An Online Active Set Strategy for Model Predictive Control

without a phase I. When iterations are terminated prematurely, however, our method solves

a QP that is exactly known to lie on the straight line between QP(w0) and QP(wnew
0), while

the dual active set method delivers in each iteration the solution to an unknown primal QP.

Using the real-time variant of our online active set strategy, it is reasonable to assume a

greater probability (compared with the dual approach) of reaching at least the confidence

region of the measured initial state w0.

4.3 Implementation Details

4.3.1 Bounds and Constraints

Instead of the general formulation (2.3.15), our online active set strategy was implemented

for QPs of the following form:

min
x

1
2x

′Hx+ x′g(w0) (4.3.1a)

s. t. bB(w0) ≤ x ≤ bB(w0) , (4.3.1b)

bC(w0) ≤ Gx ≤ bC(w0) , (4.3.1c)

where G ∈ R
m×n, bB(w0), bB(w0) ∈ R

n and bC(w0), bC(w0) ∈ R
m for all w0 ∈ P.

This distinction between constraints and bounds seems adequate because bounds arise

naturally in the context of model predictive control and special treatment of them can

lead to substantial computional savings as described in [39]. See also Section 4.6.1 where

complexity issues are addressed.

Similar to Definition 2.9 we give the following

Definition 4.1 (free and fixed variables): Let a feasible quadratic program of the form

(4.3.1) be given. A variable xi, 1 ≤ i ≤ n, is called fixed (and the corresponding bound

active) x̌ ∈ F iff

x̌i = bB(w0)i ∨ x̌i = bB(w0)i

holds and free otherwise. The (disjoint) index sets

F(x̌)
def
=

{
i ∈ {1, . . . , n} | x̌i free

}
,

X(x̌)
def
=

{
i ∈ {1, . . . , n} | x̌i fixed

}

are called set of free variables and set of fixed variables, respectively. �

Definition 4.2 (working set of variables): Let a feasible quadratic program of the form

(4.3.1) be given. Then arbitrary index sets

F ⊆ {1, . . . , n} ,

X
def
= {1, . . . , n} \ F

are called working set!of free variables and working set!of fixed variables, respectively. Their

cardinalities are denoted by

nF

def
= |F| ,

nX

def
= |X| . �

44

4.3. Implementation Details

For every feasible point x of the QP (4.3.1) there exist corresponding working sets of free

and fixed variables F ⊆ F(x) and X as well as a working set A ⊆ A(x). That means that

we can rearrange the components of x such that

(�
IdnX

CF CX

)(
xF

xX

)

=

(
bX
bA

)

(4.3.2)

is valid, where C
def
= GA and bX ∈ R

nX and bA ∈ R
nA contain suitable subsets of the

components of bB(w0)X, bB(w0)X and bC(w0)A, bC(w0)A, respectively. We call C active

constraints matrix and the left hand side matrix of Eq. (4.3.2) augmented active con-

straints matrix. This representation of fixed variables and active constraints will be useful

in Section 4.3.3 when matrix updates are to be described.

4.3.2 Null Space Approach

Our implementation is based on the null space approach (cf. Section 3.1.1) for solving

the KKT system (4.1.7). For this choice several reasons were decisive: first, as explained

in Chapter 3, the null space method is particularly numerically stable and, in contrast to

the range space method and the dual approach, no positive definite Hessian matrix is re-

quired; instead, a positive definite projected Hessian matrix is sufficient which facilitates

extensions for dealing with positive semi-definite Hessian matrices (including linear objec-

tive functions). Furthermore, computational savings due to the distinction of bounds and

constraints, which seems well justified within MPC problems, are “most readily achieved in

null space methods.” [34] Finally, when using the null space approach the more bounds and

constraints are active the less computational effort is required per working set change. So,

the proposed online active set strategy takes the most computational time per working set

change if the controlled system is near the steady-state and almost no active set changes

occur. If, e.g. after a strong pertubation, the controlled system is far from its steady-state

and typically many optimal active set changes are neccessary our online active set strat-

egy can perform more working set changes per sampling time than near the steady-state.

Section 4.6.1 illustrates that a significant amount of computational effort is saved if many

bounds become active.

The distinction of bounds and constraints makes necessary adaptations of the matrix de-

compositions and of the way the KKT system (4.1.7) is solved in order to determine the

primal-dual step direction. Therefore, both matrices are subdivided into parts corresponding

to free and fixed variables, respectively:

(
CF CX

)
(
xF

xX

)

def
= Cx , (4.3.3a)

(
xF

xX

)′(
HF HM

H ′
M HX

)(
xF

xX

)

def
= x′Hx , (4.3.3b)

where HF ∈ R
nF×nF , HX ∈ R

nX×nX , HM ∈ R
nF×nX and CF ∈ R

nA×nF , CX ∈ R
nA×nX .

Accordingly, not the whole active constraint matrix C is decomposed but only that part

which corresponds to the free variables F. Instead of the common QR decomposition a

45

Chapter 4. An Online Active Set Strategy for Model Predictive Control

variant called TQ factorisation, as proposed in [39], is maintained during the iterations:

C ′
F = V

(
U

�

)

(4.3.4a)

⇐⇒ CF =

(
U

�

)′

V ′ =

(
U

�

)′

Idr
nF

Idr
nF
V ′ , Idr

nF

def
=






1

. .
.

1




 (4.3.4b)

⇐⇒ CF =
(�

T
)
Q′

F (4.3.4c)

where V ∈ R
nF×nF is an orthonormal and U ∈ R

nA×nA an upper triangular matrix. Thus,

T
def
= U ′Idr

nA
is a reverse lower triangular matrix and QF

def
= Idr

nF
V is orthonormal because

both factors Idr
nF

and V are. Matrix QF is subdivided into

(
ZF YF

) def
= QF (4.3.5)

where ZF ∈ R
nF×(nF−nA) contains a basis of the null space restricted to free variables and

YF ∈ R
nF×nA is formed by range space basis vectors of CF. This leads to the following

Definition 4.3 (restricted null space): Let QF be an orthonormal matrix as defined in

Eqs. (4.3.4) and let ZF denote the (nF − nA) leftmost columns of QF. Then

imZF ⊆ R
nF

is called restricted null space of the active constraints. Its dimension is denoted by

nZ
def
= nF − nA . �

A Cholesky decomposition is only calculated for the Hessian projected to the restricted null

space of CF:

R′R
def
= Z ′

FHFZF , (4.3.6)

where R ∈ R
nZ×nZ is an upper triangular matrix.

After the adaptation of the matrix decompositions we now have a closer look at the way the

primal-dual step direction is determined. To this end the KKT system (4.1.7) is subdivided

into free and fixed variables:






HF HM
�

C ′
F

H ′
M HX IdnX

C ′
X�

IdnX

� �

CF CX

� �













∆xF

∆xX

∆yX

∆yA







=







−∆gF

−∆gX

∆bX
∆bA






, (4.3.7)

where ∆xF ∈ R
nF and ∆xX ∈ R

nX denote the primal step direction of free and fixed

variables, respectively; ∆yX ∈ R
nX and ∆yA ∈ R

nA denote the dual step direction of active

bounds and constraints, respectively; ∆gF ∈ R
nF and ∆gX ∈ R

nX denote the gradient step

direction for free and fixed variables, respectively; ∆bX ∈ R
nX denotes the step direction

of the active bounds vectors2 and ∆bA ∈ R
nA denotes the step direction of the active

constraints vectors2.
2A suitable subset of the lower and upper (constraints’) bounds vectors, to be more precise.

46

4.3. Implementation Details

Then we use the orthonormal matrix QF to perform a coordinate transformation: with the

definition

S
def
=










Z ′
F

� � �

Y ′
F

� � �

�
IdnX

� �

� �
IdnX

�

� � �
IdnA










∈ R
n+nX+nA (4.3.8)

we obtain

S







HF HM � C ′

F

H ′

M HX IdnX
C ′

X

� IdnX � �
CF CX � �






S′ =









Z ′

F
HFZF Z ′

F
HFYF Z ′

F
HM � Z ′

F
C ′

F

Y ′

F
HFZF Y ′

F
HFYF Y ′

F
HM � Y ′

F
C ′

F

H ′

MZF H ′

MYF HX IdnX
C ′

X

� � IdnX � �
CFZF CFYF CX � �









, (4.3.9a)









∆xZ
F

∆xY
F

∆xX

∆yX

∆yA









def
= S







∆xF

∆xX

∆yX

∆yA






, (4.3.9b)









−∆gZ
F

−∆gY
F

−∆gX

∆bX

∆bA









def
= S







−∆gF

−∆gX

∆bX

∆bA






. (4.3.9c)

This leads to the following linear system for determination of the primal-dual step directions










R′R Z ′
F
HFYF Z ′

F
HM

� �

Y ′
F
HFZF Y ′

F
HFYF Y ′

F
HM

�
T ′

H ′
MZF H ′

MYF HX IdnX
C ′

X� �
IdnX

� �

�
T CX

� �



















∆xZ
F

∆xY
F

∆xX

−∆yX

−∆yA










=










−∆gZ
F

−∆gY
F

−∆gX

∆bX
∆bA










(4.3.10)

with the following solutions:

∆xX = ∆bX , (4.3.11a)

∆xYF = T−1 (∆bA − CX∆xX) , (4.3.11b)

∆xZF = −R−1(R′)−1
(
∆gZF + Z ′

F

(
HFYF∆xYF +HM∆xX

))
, (4.3.11c)

∆yA = (T ′)−1
(
∆gYF + Y ′

F (HF∆xF +HM∆xX)
)
, (4.3.11d)

∆yX = H ′
M∆xF +HX∆xX + C ′

X∆yA + ∆gX , (4.3.11e)

with ∆xF

def
= ZF∆xZF + YF∆xYF . (4.3.11f)

These calculations can be simplified by exploiting common subexpressions. Moreover, it

is possible to accelerate the calculation if the currently active bounds bX or constraints’

bounds bA (cf. Eq. (4.3.2)) do not depend on w0, and thus ∆bX =
�

or ∆bA =
�
.

47

Chapter 4. An Online Active Set Strategy for Model Predictive Control

4.3.3 Matrix Updates

Until the solution and a corresponding optimal working set is found, the current working set

must be modified by adding or removing a bound or a constraint in each iteration. Further-

more, decompositions of the projected Hessian matrix Z ′
F
HZF and the active constraints

matrix CF have to be maintained in order to efficiently compute new step directions. How-

ever, re-computation in each iteration would foil this benefit because calculations of both

the Cholesky decomposition as well as the TQ factorisation require O(n3) floating-point

operations. Instead, because a single working set change affects these decompositions in

a rather simple way, it is possible to reduce the effort to O(n2) floating-point operations

(per iteration) by using so-called matrix updates.

In this subsection, we will describe the matrix updates used in our implementation which

are specially tailored to the context where bounds and constraints are distinguished. The

presentation is based on [39], complexity issues are examined in Section 4.6.1. We start

with a brief summary of Givens plane rotations which are a necessary prerequisite for the

proposed matrix updates.

Givens Plane Rotations

A Givens plane rotation can be expressed as a matrix of the following form (cf. [43] and
e.g. [46]):

Oi,j(ϕ)
def
=

























1
. . .

1

cosϕ sinϕ

1
. . .

1

− sinϕ cosϕ

1
. . .

1

























, ϕ ∈ [0, 2π) . (4.3.12)

Herein ϕ can be chosen is such a way that the j-th component of a vector v ∈ R
n becomes

zero if v is premultiplied by Oi,j(ϕ):

(
Oi,j(ϕ)v

)

k
=







vi cosϕ+ vj sinϕ if k = i

−vi sinϕ+ vj cosϕ if k = j

vk else

(4.3.13)

which implies that
(
Oi,j(ϕ)v

)

j
= 0 ⇐⇒ cosϕ =

vi
√

v2
i + v2

j

∧ sinϕ =
vj

√

v2
i + v2

j

. (4.3.14)

By definition every matrix Oi,j(ϕ) is orthonormal with determinant one. Therefore pre-

multiplication by Oi,j(ϕ) can be interpreted as a counterclockwise rotation in the (i, j)

coordinate plane, which explains the name.

48

4.3. Implementation Details

Successive application of Givens plane rotations allows to introduce certain zero patterns

into a vector or, especially, another matrix. For example it is possible to transform an

arbitrary matrix into an upper triangular matrix. While this can also be done, even at lower

computational costs, via Gaussian elimination, a very important advantage of Givens plane

rotations is that they are particularly numerically stable because of their orthonormality.

In practice, formulae different from those given in (4.3.14) for computation of cosϕ and

sinϕ are used in order to prevent possible overflow [21]. Furthermore, computational

savings are possible when multiplying Oi,j(ϕ) with a matrix. Of course, from (4.3.13) it

is evident that only two rows (or columns, if Oi,j(ϕ) is multiplied from the right) have to

be involved into the calculation. But moreover, there are ways to reduce the number of

multiplications neccessary per step from four, as in (4.3.13), to three or even to two—so-

called fast plane rotations [47], [1]. However, this comes at the expense of considerable

overhead which can, even in the case of large matrices, outweigh the benefit [48]. In our

implementation we tried (4.3.13), which requires four multiplications and two additions,

and a variant described in [21], which requires three multiplications and three additions,

and found both almost equally efficient.

Matrix Permutations

When applying matrix updates it is sometimes helpful to permute the vector of free variables

xF which results in rearrangements of rows or columns of the involved matrices. Therefore,

before descriptions of the actual matrix updates are given, we show the mathematical

justification of these permutations:

Permutation of the vector of free variables xF is equivalent to multiplying it with a non-

singular square matrix P :

x̂F

def
= PxF , where P ∈ {0, 1}n×n , P ′P = Id . (4.3.15)

This leads to the following expressions:

CFxF = CFP
′PxF = ĈFx̂F, (4.3.16a)

CFQF = CFP
′PQF = ĈFQ̂F, (4.3.16b)

Z ′
FHFZF = Z ′

FP
′PHFP

′PZF = Ẑ ′
FĤFẐF, (4.3.16c)

where ĈF

def
= CFP

′, Q̂F

def
= PQF, ẐF

def
= PZF, ĤF

def
= PHFP

′. (4.3.16d)

This means that we have to rearrange the columns of CF, the rows of QF and ZF (and YF)

as well as the rows and the colums of HF in the same way as the components of vector xF;

the matrices R and T are not affected. Because the resulting transformed QP is completely

equivalent to the original one we omit matrix P from now on.

These permutations are implemented by means of an index list of free variables which is

realised as a double linked list. Elements of xF and the mentioned matrices are accessed via

this index list which is necessary anyway if explicit re-storing while working with submatrices

shall be avoided. The latter is also the reason why an index list of active constraints is

held, too. It is obvious that the order of (active) constraints within a QP is arbitrary.

49

Chapter 4. An Online Active Set Strategy for Model Predictive Control

When illustrating certain matrix modification processes the following symbols are used:

× denotes a non-zero element that is not modified,

∗ denotes a non-zero element that is modified,

� denotes a previously non-zero element that is annihilated,

� denotes a previously zero element that is filled in,

· denotes a zero element that is not modified (same as blank),

− denotes an element of a row or a column to be removed from a matrix.

Adding a Constraint to Working Set

First, we consider the case when a constraint is added to the working set. According to

the above-mentioned remarks on matrix permutations we assume without loss of generality

that the newly active constraint is added as the last row of C. Thus, the row number of

C (= GA), the column number of YF and the dimension of T increase by one while the

column number of ZF decreases by one. Let

c′new =
(
cnew
F

′ cnew
X

′
)
∈ R

n, (4.3.17a)

t′new =
(
tnew
Z

′ tnew
Y

′
) def

= cnew
F

′QF ∈ R
nF (4.3.17b)

denote the row of C corresponding to the newly active constraint (again, optimisation

variables are permuted properly) and the new last row of T , respectively. Then the following

equation holds:

Cnew
F QF =

(
CF

cnew
F

′

)

QF =

(�
T

tnew
Z

′ tnew
Y

′

)

. (4.3.18)

In order to transform the right hand side of (4.3.18) into the reverse lower triangalur matrix
Tnew a sequence of Givens plane rotations is applied from the right. For the case nF = 7
and nA = 3 (nnew

A
= 4) this can be illustrated as follows:







×
× ×

× × ×
× × × × × × ×













×
× ×

× × ×
� ∗ × × × × ×













×
× ×

× × ×
· � ∗ × × × ×













×
× ×

× × ×
· · � ∗ × × ×







Using the notation introduced in Eq. (4.3.12) this transformation formally means

Tnew
def
=

(�
T

tnew
Z

′ tnew
Y

′

)

·O2,1(ϕ1) · . . . ·O
nZ,nZ−1(ϕnZ−1) (4.3.19a)

=

(�
0 T

�
θnew tnew

Y
′

)

, θnew 6= 0 ,

Qnew
F

def
= QF ·O

2,1(ϕ1) · . . . · O
nZ,nZ−1(ϕnZ−1) . (4.3.19b)

Note that Qnew
F

is also an orthonormal matrix since all Givens plane rotation matrices are

orthonormal. By definition, the null space basis matrix ZF is transformed the same way as

50

4.3. Implementation Details

QF in Eq. (4.3.19b). Note, however, that the rightmost column of ZF becomes the leftmost

column of Y new
F

since the dimension of the null space decreased by one when adding a new

constraint to the working set3. The transformation of ZF also affects the Cholesky factor

of the reduced Hessian matrix Z ′
F
HZF in the following way:

`

× × × ×

´

`

� ∗ × ×

´

`

· � ∗ ×

´

`

· · � ∗

´

0

B

B

@

× × × ×

× × ×

× ×

×

1

C

C

A

0

B

B

@

∗ ∗ × ×

� ∗ × ×

× ×

×

1

C

C

A

0

B

B

@

× ∗ ∗ ×

× ∗ ∗ ×

� ∗ ×

×

1

C

C

A

0

B

B

@

× × ∗ ∗

× × ∗ ∗

× ∗ ∗

� ∗

1

C

C

A

Again, this illustration depicts the case nF = 7, nA = 3 (nnew
A

= 4) and nZ = 4 (nnew
Z = 3)

where besides matrix R also the vector tnew
Z

′ is shown at the top for clarity. The chosen

order of the Givens plane rotations implies that the upper triangular form of matrix R is only

slightly destroyed: only one additional subdiagonal element is introduced in each column

of Rint, which denotes the resulting intermediate Cholesky factor. In order to restore the

upper triangular form another sequence of Givens plane rotations is applied to R int:

0

B

B

@

× × × −

× × × −

× × −

× −

1

C

C

A

0

B

B

@

∗ ∗ ∗

� ∗ ∗

× ×

×

1

C

C

A

0

B

B

@

× × ×

· ∗ ∗

� ∗

×

1

C

C

A

0

B

B

@

× × ×

· × ×

· ∗

�

1

C

C

A

Algebraically these transformations of R can be expressed as

Rint
def
= H

1
2Znew

F (4.3.20a)

= H
1
2ZF ·O

2,1(ϕ1) · . . . ·O
nZ,nZ−1(ϕnZ−1) · P ,

Rnew
def
= O1,2(ϕnZ

) · . . . ·OnZ−1,nZ(ϕ2(nZ−1)) · Rint , (4.3.20b)

where P is a projection matrix which removes the rightmost column. Furthermore, if we

define O
def
= O1,2(ϕnZ

) · . . . ·OnZ−1,nZ(ϕ2(nZ−1)), it is obvious that the second sequence of

Givens plane rotations does not affect other matrices:

Znew
F

′HZnew
F = R′

intRint = R′
new OO

′
︸︷︷︸

= Id

Rnew = R′
newRnew . (4.3.21)

Adding a Bound to Working Set

When adding a bound to the working set we can assume that the variable to be fixed

corresponds to the last column of the matrix C by applying an appropriate permutation.

Thus, the column number of C and ZF as well as the dimension of QF are decreased by

one; the dimension of T does not change. Addition of a bound on the last free variable

3This is actually only true under the asumption that Cnew
F has full row rank. Section 4.5.1 describes how

this can be maintained.

51

Chapter 4. An Online Active Set Strategy for Model Predictive Control

appends the (transposed) nF-th coordinate vector
(
e′nF

�)
∈ R

n, e′nF
∈ R

nF , at the top of

the augmented active constraints matrix:





e′nF

�

�
IdnX

CF CX





(
QF

�

�
IdnX

)

=





tnew
Z

′ tnew
Y

′ �

� �
IdnX

�
T CX



 . (4.3.22)

The updated TQ factorisation is obtained by reducing the topmost row of the right hand

side matrix of Eq. (4.3.22) to the nF-th coordinate vector via a sequence of Givens plane

rotations:





Qnew
F � �

� 1 �
� � IdnX




def
=

(
QF �

� IdnX

)

· O2,1(ϕ1) · . . . ·O
nF ,nF−1(ϕnF−1) , (4.3.23a)





� � 1 �
� � � IdnX

� Tnew CnF
CX




def
=





tnew
Z

′ tnew
Y

′ �
� � IdnX

� T CX



 ·O2,1(ϕ1) · . . . · O
nF,nF−1(ϕnF−1) , (4.3.23b)

where CnF
denotes the column of C which corresponds to the newly fixed variable.

The first (nZ−1) Givens plane rotations O2,1(ϕ1)·. . . ·O
nZ,nZ−1(ϕnZ−1), nZ ≤ nF, alter the

columns of QF (i.e. ZF) in the same way as described above for the case where a constraint

is added to the working set. Therefore, another sequence of Givens plane rotations has to

be applied in order to restore the upper triangular form of Rint, too.

The last (nF − nZ) Givens plane rotations OnZ+1,nZ(ϕnZ
) · . . . ·OnF,nF−1(ϕnF−1) have the

effect of filling in elements above the reverse diagonal of matrix T , thereby shifting it one

position to the left and transforming it into Tnew. We picture this process for nF = 4

(nnew
F

= 3), nZ = 1 (nnew
Z = 0) and nA = 3; the topmost row of the right hand side matrix

of Eq. (4.3.22) is shown at the top:

(
× × × ×

)

(
� ∗ × ×

)

(
· � ∗ ×

)

(
· · � ∗

)





×
× ×

× × ×









×
× ×

� ∗ × ×









×
� ∗ ×

× ∗ ∗ ×









� ∗
× ∗ ∗

× × ∗ ∗





Removing a Constraint from Working Set

We consider the situation where the i-th, 1 ≤ i ≤ nA, of the currently active constraints

shall be removed from the working set. Then the row number of C and the dimension of T

are decreased by one; the column number of ZF and the dimension of R increase by one.

First, the i-th row is removed from both CF and T leading to the matrices Cnew
F

∈

R
(nA−1)×nF and Tint ∈ R

(nA−1)×nA satisfying

Cnew
F QF =

(�
Tint

)
. (4.3.24)

52

4.3. Implementation Details

Next, Tint is transformed to reverse upper triangular form which is achieved via Givens plane

rotations applied to the columns 1 through i:

(�
Tnew

) def
=

(�
Tint

)
·OnZ+i,nZ+i−1(ϕi−1) · . . . · O

nZ+2,nZ+1(ϕ1) ,(4.3.25a)

Qnew
F

def
= OnZ+i,nZ+i−1(ϕi−1) · . . . ·O

nZ+2,nZ+1(ϕ1) . (4.3.25b)

We illustrate the transformation of T for the case nA = 4 (nnew
A

= 3) and i = 3:







×
× ×

− − − −
× × × ×











×
× × ×

× × × ×









×
� ∗ ×

× ∗ ∗ ×









×
· × ×

� ∗ × ×





Equation (4.3.25b) shows that ZF within QF is not altered by the mentioned Givens plane

rotations. Thus, Znew
F

is identical to ZF except for the additional rightmost column znew
F
∈

R
nF which is a linear combination of columns 1 through i of YF. This fact provides an

efficient possibility to calculate the new Cholesky factor Rnew from R (with rnew ∈ R
nZ ,

%new ∈ R>0):

Znew
F

′Hnew
F Znew

F = R′
newRnew (4.3.26a)

⇐⇒

(
Z ′

F

znew
F

′

)

HF

(
ZF znew

F

)
=

(
R′ �

r′new %new

)(
R rnew

�
%new

)

(4.3.26b)

⇐⇒

(
Z ′

F
HFZF Z ′

F
HFz

new
F

znew
F

′HFZF znew
F

′HFz
new
F

)

=

(
R′R R′rnew

r′newR r′newrnew + %2
new

)

(4.3.26c)

⇐⇒ rnew =
(
R′
)−1

Z ′
FHFz

new
F ∧ %new =

√

r′newrnew − znew
F

′HFznew
F

.(4.3.26d)

Note that Hnew
F

= HF and that the radicand within Eq. (4.3.26d) is positive as long as

Znew
F

′Hnew
F

Znew
F
∈ S�0. This both necessary and sufficient criterion can actually be used to

check positive definiteness of the projected Hessian matrix during the runtime. Moreover,

it is worth mentioning that calculation of the new Cholesky factor Rnew via (4.3.26) is only

possible if znew
F

is appended as the rightmost column of Znew
F

. This fact motivates the

usage of a TQ decomposition because znew
F

would be added as the leftmost column if we

were using the usual QR decomposition instead.

Removing a Bound from Working Set

Removing a bound from the working set means to free a previously fixed variable. Therefore,

the column number of C and ZF as well as the dimension of QF and R are increased by one;

the dimension of T is unaltered. Applying a suitable permutation, we can assume without

loss of generality that the (nF + 1)-th variable, i.e. the first fixed one, is to be freed from

its bound. Then the leftmost column of CX becomes the rightmost column cnew
F
∈ R

nA of

Cnew
F

:

(� �
Idnnew

X

CF cnew
F

Cnew
X

)




QF

� �

�
1

�

� �
Idnnew

X



 =

(� � �
Idnnew

X�
T cnew

F
Cnew

X

)

, (4.3.27)

53

Chapter 4. An Online Active Set Strategy for Model Predictive Control

where Cnew
X
∈ R

nA×(nX−1) denotes matrix CX without column cnew
F

.

Thus, a sequence of Givens plane rotations is used in order to reduce (T cnew
F

) to reverse

lower triangular form (illustrated for nA = 3):





× ×
× × ×

× × × ×









� ∗
× ∗ ∗

× × ∗ ∗









· ×
� ∗ ×

× ∗ ∗ ×









· ×
· × ×

� ∗ × ×





Algebraically, the effects on T and QF can be expressed as

(�
Tnew

) def
= (

�
Tint cnew

F) · OnF+1,nF(ϕ1) · . . . · O
nZ+2,nZ+1(ϕnF−nZ

) , (4.3.28a)

Qnew
F

def
=

(
QF

�

�
1

)

· OnF+1,nF(ϕ1) · . . . ·O
nZ+2,nZ+1(ϕnF−nZ

) . (4.3.28b)

This sequence of Givens plane rotations does not affect the old null space basis matrix ZF

but the new rightmost column of Znew
F

:

Znew
F

def
=

(
ZF znew

F�
ζnew

F

)

, ζnew
F ∈ R \ {0} . (4.3.29)

This change of ZF also causes HF to be modified. Like in the case where a constraint is
removed from the working set, no fresh Cholesky decomposition must be performed but
the following efficient update scheme can be applied instead:

Znew
F

′Hnew
F Znew

F = R′

newRnew (4.3.30a)

⇐⇒

(
Z ′

F �
znew

F

′ ζnew
F

)(
HF hnew

F

hnew
F

′ ηnew

)(
ZF znew

F

� ζnew
F

)

=

(
R′ �
r′new %new

)(
R rnew

� %new

)

(4.3.30b)

⇐⇒ rnew = (R′)
−1
Z ′

F (HFz
new
F + ζnew

F hnew
F) (4.3.30c)

∧ %new =
√

znew
F

′ (HFznew
F

+ 2ζnew
F

hnew
F

) + ηnew
F

(ζnew
F

)2 − r′newrnew. (4.3.30d)

Again, the radicand within Eq. (4.3.30d) is positive provided that Znew
F

′Hnew
F

Znew
F
∈ S�0.

4.4 Initialisation

In order to initialise our online active set strategy an optimal solution pair of the initial QP

and a corresponding working set A must be available. So the question naturally arises of

how to obtain this information. One possibility would be to solve the initial QP by means

of a standard active set QP solver. But this would be rather inconvenient since all the effort

needed to implement and setup such a solver would be necessary just for the solution of

the very first QP. Instead, our online active set strategy allows for an easy workaround: one

simply has to set up a QP whose solution is known. A straightforward idea is to “solve”

the following QP:

min
x

1
2x

′Hx (4.4.1a)

s. t. −b ≤ x ≤ b , (4.4.1b)

−b ≤ Gx ≤ b , (4.4.1c)

where the gradient is set to zero and b ≥
�

is arbitrary.

54

4.5. Degeneracy Handling

Lemma 4.1 (initialisation): If b ≥
�

then (
�
,

�
) is a primal-dual solution pair of the

quadratic program (4.4.1) with corresponding working set A = ∅. �

Proof: If A is assumed to be empty the KKT conditions of Theorem 2.5 have the following

form:

Hxopt =
�
,

yopt =
�
,

−b ≤ Gxopt ≤ b .

It is obvious that they are satisfied by the choice
(
xopt, yopt

) def
= (

�
,

�
). �

Therefore we can start from (
�
,

�
) and use our usual homotopy to go towards the solution

of the initial QP.

This strategy also works for equality constraints: Let us assume that our initial QP comprises

the constraint

γ ≤ Gix ≤ γ , γ ∈ R , i ∈ {1, . . . ,m} . (4.4.2)

If this equality constraint is relaxed to the inequality constraint

−β ≤ Gix ≤ β , β ∈ R≥0 (4.4.3)

±β will be both shifted towards γ. As soon as one of the constraint’s bounds becomes

active, and this must happen by the time they coincide, the constraint will not be considered

when determing the maximum dual stepsize τ dual
max anymore and thus will stay active for all

following iterations.

However, if there are nEC ≤ min {n,m} equality constraints this procedure leads to nEC

unnecessary working set changes since all equality constraints will finally become active. In

order to avoid this, it is possible to start at (
�
,

�
) and include the indices of all equality

constraints into the initial working set A(and the corresponding part of b to zero). Similar

to Lemma 4.1, it can be shown that (
�
,

�
) is still a primal-dual solution. Of course, in this

case the TQ factorisation CF = (
�
T)Q′

F
as well as the Cholesky decomposition has to be

calculated before starting the initial homotopy.

4.5 Degeneracy Handling

4.5.1 Linear Dependence of Constraints

Our algorithm requires that the KKT matrix in Eq. (4.3.7) is nonsingular. Because of the

assumed positive definiteness of H this property holds if and only if the augmented active

constraints matrix (�
IdnX

CF CX

)

has full row rank (see Lemma 2.2). Since deletion of a row cannot lead to rank deficiency,

linear independence only needs to be ensured if a row is added to the augmented active

constraints matrix, i.e. if a bound or a constraint is added to the working set.

55

Chapter 4. An Online Active Set Strategy for Model Predictive Control

In order to clarify the idea, handling of linear dependence is described for QPs where

bounds are treated as ordinary constraints, first. Refinements of this approach tailored to

our problem formulation and the way we solve the KKT system will be presented afterwards.

In the case that constraint j /∈ A shall be added to the working set [11] proposed the

solution of the following auxiliary system as a test if G′
j and the rows of GA (= C) are

linearly independent:

(
H G′

A

GA

�

)(
p

q

)

=

(
G′
j

�

)

, (4.5.1)

where p ∈ R
n and q ∈ R

nA.

Lemma 4.2 (linear independence check): Provided that GA has full row rank, G′
j and

the rows of GA are linearly independent if and only if Eq. (4.5.1) has a solution with

p 6=
�
. �

Proof: Since GA is assumed to have full row rank, linear dependence of G′
j and the columns

of GA is equivalent to

∃ q̂ ∈ R
nA : G′

j +
∑

i∈A

q̂iG
′
i =

�
. (4.5.2)

Thus, if G′
j and the columns of GA are linearly dependent (p, q)

def
= (

�
,−q̂) is obviously

a solution of (4.5.1). According to Lemma 2.2 this solution is unique which implies that

Eq. (4.5.1) has no solution with p 6=
�
.

On the other hand, if G′
j and the columns of GA are linearly independent (and thus G′

j 6=
�
)

there exists no q̂ ∈ R
nA that satisfies Eq. (4.5.2). Therefore Eq. (4.5.1) has no solution

with p =
�
. But since Lemma 2.2 guarantees the existence of a solution there must be a

solution of Eq. (4.5.1) with p 6=
�
. �

So, if p 6=
�

we can conclude that the active constraint matrix keeps full row rank after the

addition of constraint j to the working set. Otherwise, the components of vector q and the

current dual vector yopt
A

can be used to determine a currently active constraint which must

be removed before adding constraint j to the working set: In this case

∃! q ∈ R
nA : G′

j =
∑

i∈A

qiG
′
i (4.5.3)

holds, where the uniqueness of q follows from the full row rank of GA, and it depends on

the components of q how we proceed. If q ≤
�

all following QPs on the current homotopy

path are infeasible as the boundary of the set P of admissible initial values is reached (this

will be shown in Section 4.5.2). Instead, we assume that at least one component of q is

positive. Then the following result is valid (taken from [11]):

Theorem 4.1 (ensuring linear independence of the active constraints): LetGA be the

current active constraints matrix with full row rank and G′
j , j /∈ A, the constraint to be

added to the working set A. Moreover, assume that there exist a vector q ∈ R
nA as in

Eq. (4.5.3) with at least one positive component and let
(
x̃opt(τ1), ỹ

opt(τ1)
)

denote the

optimal primal-dual solution pair at the current point τ1 ∈ R≥0 on the homotopy path.

56

4.5. Degeneracy Handling

Then the matrix

GAnew , Anew
def
= (A ∪ {j}) \ {k} (4.5.4)

with

k
def
= arg min

i∈A

{

ỹopt
i (τ1)

qi

∣
∣
∣ qi > 0

}

(4.5.5)

also has full row rank. �

Proof: Because
(
x̃opt(τ1), ỹ

opt(τ1)
)

is a primal-dual optimal solution the KKT condi-

tion (4.1.5a) holds, i.e.

Hx̃opt(τ1) + g̃(τ1) =
∑

i∈A

G′
iỹ

opt
i (τ1) . (4.5.6)

By multiplying Eq. (4.5.3) with an arbitrary λ ∈ R≥0 and subtracting the result from

Eq. (4.5.6) we yield

Hx̃opt(τ1) + g̃(τ1) = λG′
j +

∑

i∈A

G′
i

(

ỹopt
i (τ1)− λqi

)

. (4.5.7)

Thus λ and the coefficients
(
ỹopt
i (τ1) − λqi

)
are also a valid dual solution vector which

satisfies the KKT conditions (4.1.5) as long as all coefficients remain nonnegative. The

largest value of λ for which this condition is satisfied is given by

λmax
def
= min

i∈A

{

ỹopt
i (τ1)

qi

∣
∣
∣ qi > 0

}

∈ R≥0 . (4.5.8)

Note that this minimum is determined over a nonempty set according to our assumptions.

Let k denote the constraint for which the minimum is attained, then ỹopt
k (τ1) is reduced

to zero and constraint k can thus be removed from the working set. Since qk > 0 the

constraint vector G′
j is linearly independent from the G′

i, i ∈ A \ {k}, and therefore matrix

GAnew , Anew
def
= (A ∪ {j}) \ {k} has full row rank. �

This result provides a computationally convenient way for choosing a linearly independent

subset of active constraints, if necessary. But it does not guarantee that this choice allows

to make further progress along the homotopy path because it might be that constraint k

immediately becomes active again. In order to prove that this cannot happen under certain

conditions we need the following definition from [83]:

Definition 4.4 (ties): The quadratic program (4.1.3) has

• primal ties at τ0 ∈ [0, 1] if τprim
max < τdual

max and the minimum (4.1.10a) is obtained for

at least two distinct indices;

• dual ties at τ0 ∈ [0, 1] if τdual
max < τprim

max and the minimum (4.1.10b) is obtained for at

least two distinct indices;

• primal-dual ties at τ0 ∈ [0, 1] if τdual
max = τprim

max ;

• ties at τ0 ∈ [0, 1] if it has primal, dual or primal-dual ties. �

If ties occur there are different possibilities how to choose the new working set which poses

additional difficulties. Otherwise the new working set is uniquely determined and we can

prove the following theorem (taken from [11]):

57

Chapter 4. An Online Active Set Strategy for Model Predictive Control

Theorem 4.2: If the assumptions of Theorem 4.1 hold and if no ties occur at τ1, then

constraint k remains inactive within an interval (τ1, τ2], τ2 > τ1, on the homotopy path.�

Proof: The current linear line segment x̃(τ0) + τ∆x(τ0) of the primal optimal solution

homotopy, starting at some τ0 ∈ [0, τ1] and ending at τ1, was chosen such that

GA

(
x̃(τ0) + τ∆x(τ0)

)
= b̃A(τ) ∀ τ ∈ [0, 1] , (4.5.9a)

G′
j

(
x̃(τ0) + τ∆x(τ0)

)
< b̃j(τ) ∀ τ ∈ (τ1, 1] (4.5.9b)

hold. Thus, by multiplying Eq. (4.5.3) with x̃(τ0) + τ∆x(τ0), one obtains the following

equation
∑

i∈A

qib̃i(τ) < b̃j(τ) ∀ τ ∈ (τ1, 1] . (4.5.10)

Within the next step of Algorithm 4.1, the new linear line segment of x̃(τ1) + τ∆x(τ1),

starting at τ1 and ending at some τ2 ∈ [τ1, 1], is chosen such that

G′
i

(
x̃(τ1) + τ∆x(τ1)

)
= b̃i(τ) ∀ i ∈ Anew

def
= (A ∪ {j}) \ {k} (4.5.11)

holds in [0, 1]. By applying Eq. (4.5.3) again, we yield

b̃j(τ) =
∑

i∈A\{k}

qib̃i(τ) + qkG
′
k

(
x̃(τ1) + τ∆x(τ1)

)
∀ τ ∈ [0, 1] . (4.5.12)

Finally, by combining Eq. (4.5.10) and Eq. (4.5.12) we obtain

qkb̃k(τ) < qkG
′
k

(
x̃(τ1) + τ∆x(τ1)

)
∀ τ ∈ (τ1, 1] (4.5.13)

and, since qk > 0, also

b̃k(τ) < G′
k

(
x̃(τ1) + τ∆x(τ1)

)
∀ τ ∈ (τ1, 1] (4.5.14)

which proves that constraint k remains (strictly) inactive within the next step of Algo-

rithm 4.1 from τ1 to τ2. If no ties occur at τ1 only constraint j becomes active at τ1 and

τ2 > τ1 is valid. �

An approach for resolving ties is presented in [83]. Therein the solution of an auxiliary (non-

parametric) quadratic program is proposed, which seems to be inadequate for the online

context. Thus, our implementation does not cover the situation when ties are present—and

no difficulties have been observed so far.

Figure 4.3 illustrates an example in which linear dependence of the active constraints occurs:

the constraints are shifted while following the homotopy path (for simplicity, only one

constraint is thought to be parameterised) which causes degeneracy at a certain homotopy

parameter τ1. Then Theorem 4.1 can be utilised in order to resolve this situation, i.e. to

find an active constraint which can be removed from the working set. Afterwards, further

progress along the homotopy path can be made.

58

4.5. Degeneracy Handling

PSfrag replacements xopt

R
2

(a) Two active constraints.

PSfrag replacements xopt

R
2

(b) A third, parameterised constraint be-

comes active which is linearly dependent

from the other ones.

PSfrag replacements xopt

R
2

(c) A formerly active constraint is re-

moved from the working set (cf. Theo-

rem 4.1).

PSfrag replacements
xopt

R
2

(d) The parameterised (and active) con-

straint is shifted further.

Figure 4.3: Example of linear dependence of active constraints (bold) in parametric pro-

gramming (dark-grey: parameterised constraint, grey: feasible set).

Implementation of Linear Dependence Handling

In order to ensure linear independence of the active constraints and to detect possible

infeasibility, the modified KKT system (4.5.1) has to be solved. According to Eq. (4.3.10)

the implemented variant of this KKT system reads










R′R Z ′
F
HFYF Z ′

F
HM

� �

Y ′
F
HFZF Y ′

F
HFYF Y ′

F
HM

�
T ′

H ′
MZF H ′

MYF HX IdnX
C ′

X� �
IdnX

� �

�
T CX

� �



















Z ′
F
pF

Y ′
F
pF

pX

qX

qA










=










Z ′
F
(G′

j)F

Y ′
F
(G′

j)F

(G′
j)X

�

�










, (4.5.15)

59

Chapter 4. An Online Active Set Strategy for Model Predictive Control

where p ∈ R
n, q ∈ R

nA+nX and G′
j ∈ R

n were split into two parts corresponding to

the free and fixed variables or the active constraints, respectively. Because of its special

structure the computational effort for its solution is much lower than a normal primal-dual

step determination: first, we can exploit the equivalence

∃! q ∈ R
nA : (G′

j)F =
∑

i∈A

qi(CF)′i ⇐⇒ Z ′
F(G′

j)F =
�

(4.5.16)

which holds since the constraint to be added to the working set is linearly dependent with

the active constraints if and only if it lies completely in the range space of CF and is thus

orthogonal to all basis vectors of the null space of CF. So, if Z ′
F
(G′

j)F 6=
�

we can stop the

calculation as no linear dependence occurs. Otherwise, we proceed where the information

Z ′
F
(G′

j)F =
�

further simplifies the solution. Since Z ′
F
pF, Y ′

F
pF and pX become zero in this

case, we finally end up with the following formulae for q:

qA = (T ′)−1Y ′
F(G′

j)F , (4.5.17a)

qX = (G′
j)X −C

′
XqA . (4.5.17b)

Compared to the calculation of the primal-dual step direction via Eqs. (4.3.11), the cost

for a linear dependence check is almost negligible. Especially if a bound is added to the

working set because then (G′
j)F equals a unity vector and (G′

j)X is zero. However, note

that in the case of degeneracy further computations are necessary in order to perform the

additional change of the working set.

4.5.2 Infeasibility

The proposed online active set strategy produces a sequence of iterates which are primal

and dual feasible for consecutive (intermediate) quadratic programs. Thus, infeasibility

can only occur if a bound or constraint is added while following the homotopy path. In

this case the augmented active constraints matrix has to be prevented from becoming

rank deficient anyway and we mentioned in Section 4.5.1 that possible infeasibility can be

detected simultaneously, as follows.

Recall the situation4 when a constraint j /∈ A shall be added to the working set A. If GA

has full row rank, linear dependence of G′
j and the columns of GA is equivalent to

∃! q ∈ R
nA : G′

j =
∑

i∈A

qiG
′
i . (4.5.18)

Theorem 4.1 shows that we can resolve linear dependence if the vector q in Eq. (4.5.18)

has at least one positive component. If this in not the case infeasibility is encountered

(cf. [11]):

Theorem 4.3 (infeasibility detection): Let GA be the current active constraints matrix

with full row rank and G′
j , j /∈ A, the constraint to be added to the working set A. Assume

that there exists a vector q ∈ R
nA as in Eq. (4.5.18) which has no positive component.

Moreover, let
(
x̃opt(τ1), ỹ

opt(τ1)
)

denote the optimal primal-dual solution pair at the cur-

rent point τ1 ∈ R≥0 on the homotopy path and assume that no ties occur at τ1.

Then all parametric quadratic programs on the homotopy path with τ > τ1 are infeasible. �

4Again, for clarity, we restrict the presentation to the case where bounds and constraints are not distin-

guished.

60

4.5. Degeneracy Handling

Proof: Suppose that for some τ > τ1 an arbitrary vector x ∈ R
n satisfies the constraints

G′
ix ≥ b̃i(τ) ∀ i ∈ A . (4.5.19)

Multiplying each such inequality by qi ≤ 0, adding them together and using Eq. (4.5.18)

leads to

G′
jx ≤

∑

i∈A

qib̃i(τ) . (4.5.20)

But on the other hand, as in the proof of Theorem 4.2 (cp. Eq. (4.5.10)), we can derive
∑

i∈A

qib̃i(τ) < b̃j(τ) ∀ τ ∈ (τ1, 1] (4.5.21)

which implies

G′
jx < b̃j(τ) ∀ τ ∈ (τ1, 1] . (4.5.22)

Since x was arbitrary, constraint j will be violated for all τ > τ1 as long as all constraints

indexed by A remain fulfilled. Therefore, there exists no point satisfying all constraints

indexed by A ∪ {j} no matter how the primal step direction is chosen. Since Theorem 2.8

guarantees the existence of a continuous continuation of xopt(τ) all QPs on the homotopy

path are infeasible for (τ1, τ1 + ε) and some ε > 0. Finally, the convexity of P (cp. Theo-

rem 2.6) proves that all QPs on the homotopy path are infeasible for all τ > τ1. �

If the situation of Theorem 4.3 occurs, the boundary of the set of feasible parameters P is

reached and we know that the current QP is infeasible:

Theorem 4.4 (infeasibility of the current QP): Let QP(w0) be the feasible, recently

solved quadratic program and QP(wnew
0) the one to be solved next (both strictly convex

and no ties occur along the homotopy path between them). Then QP(wnew
0) is infeasible if

and only if there exists a τ1 ∈ [0, 1)—along the homotopy from QP(w0) to QP(wnew
0)—to

which Theorem 4.3 applies. �

Proof: All primal-dual pairs
(
xopt(τ), yopt(τ)

)
, τ ∈ [0, 1], along the homotopy path are

optimal and xopt(τ) primal feasible, hence. If there is no τ1 < 1 to which Theorem 4.3 ap-

plies it is possible to follow the homotopy until the optimal solution of QP(wnew
0), implying

its feasibility.

The converse direction follows directly from Theorem 4.3 as QP(wnew
0) denotes the QP on

the homotopy path at τ = 1. �

If infeasibility of the current quadratic program to be solved is detected via Theorem 4.4 our

implementation of the online active set strategy just stops the homotopy and waits for the

next QP which may be feasible again. In doing so, convexity of P ensures that a homotopy

from the currently solved intermediate QP to the new one exists (see Figure 4.4).

Provided that the MPC problem is well-posed, infeasibility should be a rare exception and

mainly due to measurement errors of the current process state wnew
0 . One interpretation of

our infeasibility strategy is that it “trusts” the current process state as long as the resulting

QP remains feasible and uses a linear interpolation between wnew
0 and the old process state

w0 otherwise. This strategy seems adequate for practical setups, where uncertainties are

inherently present, even if more elaborated schemes may be conceivable.

61

Chapter 4. An Online Active Set Strategy for Model Predictive Control

PSfrag replacements

w0

wnew
0

Figure 4.4: Infeasibility handling of the proposed online active set strategy.

4.6 Computational Complexity

4.6.1 Runtime Complexity

We already know from Section 3.1 that the effort for one iteration of a primal active

set method is O(n2) if matrix updates are used. In this section we want to investigate

the runtime complexity of the proposed online active set strategy in more detail. Since

theoretical values for the number of required iterations for finding the solution are not

available—only an (almost trivial) exponential worst-case bound is known—we restrict the

presentation to the complexity of one single iteration.

Algorithm 4.1 starts with calculating the vectors ∆w0, ∆g and ∆b via Eqs. (4.1.1) which

obviously requires O(n) floating-point operations5.

Afterwards, the primal-dual step directions ∆xopt and ∆yopt have to be determined. This

is done by using Eqs. (4.3.11) while exploiting common subexpressions therein. Clearly, as

nF, nX ≤ n and nA, nI ≤ n, this calculation requires O(n2) floating-points operations; the

exact value is given in Table 4.1.

Third, the maximum homotopy step length τmax has to be obtained from Eqs. (4.1.10).

This makes the calculation of the matrix-vector product G′
I
∆xopt and therefore nnI floating

point operations necessary6; besides some negligible O(n) operations.

5Within this section a floating-point operation is defined as one multiplication/division together with an

addition. Thus, calculating the dot product a′b of two vectors a, b ∈ R
n requires n floating-point operations,

for example.
6In the very first iteration also G′

Ix
opt has to be calculated, which is zero if the initialisation homotopy

is used.

62

4.6. Computational Complexity

Steps (4), (5) and (7) only involve a fixed number of some vector operations and thus have

O(n) complexity.

Finally, step (6) involves one of the four possible matrix updates (i.e. adding/removing of a

bound/constraint to/from the working set). Their computational effort can easily be derived

from their detailed description in Section 4.3.3 (see also [39]) and is summarised in Table 4.1,

assuming that a Givens plane rotation can be performed by means of three floating-point

operations (cf. page 49). Note that also the effort for calculating the product Z ′
F
(G′

j)F, as

decribed in Section 4.5.1, is included into the complexity of adding a bound/constraint. If

this product equals zero linear independence must be ensured: via Eqs. (4.5.17) and some

O(n) operations a bound or a constraint is determined which has to be removed from the

working set.

Table 4.1: Runtime complexity of the online active set strategy (general case).

Task: Complexity:

Determination of step direction 5n2 − 2nnA − 8nnX + 2n2
A

+ 4nAnX + 4n2
X

+O(n)

Determination of step length nnI +O(n)

Removing a bound from working set 5
2n

2 + nnA − 5nnX + 2n2
A
− nAnX + 5

2n
2
X

+O(n)

Removing a constraint from working set7 5
2n

2 − 1
2nnA − 5nnX + 7

8n
2
A

+ 1
2nAnX + 5

2n
2
X

+O(n)

Adding a bound to working set 5n2 − 4nnA − 10nnX + 3
2n

2
A

+ 4nAnX + 5n2
X

+O(n)

Adding a constraint to working set 5n2 − 4nnA − 10nnX + 4nAnX + 5n2
X

+O(n)

Ensuring linear independence nnA + 1
2n

2
A

+O(n)

Remaining calculations O(n)

As summarised in Table 4.1, the computational effort of all steps of the online active set

strategy depends not only on the number of variables but also on how many variables are

fixed (nF) and how many constraints are active (nA). One complete iteration consists of

determination of the step direction, determination of the step length, one change of the

working set and the remaining calculations. In order to simplify the analysis, we define the

average effort for one working set change as

nX

2n
· “removing a bound” +

nA

2n
· “removing a constraint”

n− nX

2n
· “adding a bound” +

n− nA

2n
· “adding a constraint” ,

(4.6.1)

since it seems reasonable to assume that it is more likely that a bound is to be removed

from the working set if more variables are fixed and so on.

Furthermore, we can consider the case when linear independence occurs. Then also linear

independence has to be ensured by removing a bound or a constraint from the working set.

The average effort for performing this additional working set change is chosen as

nX

nX + nA

· “removing a bound” +
nA

nX + nA

· “removing a constraint” , (4.6.2)

provided that nX + nA > 0.

63

Chapter 4. An Online Active Set Strategy for Model Predictive Control

As a last simplification, we assume that the number of constraints equals the number of

variables, i.e. m = n, and express both the number of fixed variables and the number of

active constraints as a fraction of some arbitrary but fixed n ∈ N:

nX

def
= nαX , αX ∈ [0, 1] , (4.6.3a)

nA

def
= nαA , αA ∈ [0, 1 − αX] . (4.6.3b)

Table 4.2 shows the runtime complexity of the online active set strategy for different values

of αX and αA. Figure 4.6.1 illustrates the runtime complexity of one complete iteration

(no linear dependence occurs) of the online active set strategy with respect to the number

of fixed variables and active constraints as defined in Eqs. (4.6.3).

We can see that the most computational effort per iteration is needed if no variables are

fixed and no constraints are active, which normally is the case if the system to be controlled

is near a steady-state. If the number of fixed variables or active constraints increases the

runtime complexity decreases significantly. This effect is particularly striking if the number

of free variables becomes small which also justifies the distinction between bounds and

constraints.

Another expected observation is that computational effort increases if linear dependence

occurs. Therefore, it is reasonable to take the effort of one complete iteration in which linear

dependece occurs and no variables are fixed and no constraints are active, i.e. 13.5n2+O(n)

floating-point operations, as an uppper bound for the computational burden of one iteration

(even if linear dependence cannot occur in this situation). Although this bound need not to

be strict because of the averaging process of Eqs. (4.6.1) and (4.6.2) and the assumption

m = n, it should be a sufficiently accurate guess for practical purposes if n is “large”.

Especially if m� n one can construct situations where the computational effort might be

higher, but it is important to note that the effort per iteration grows quadratically in the

number of variables as long as m ∈ O(n).

Table 4.2: Runtime complexity of the online active set strategy modulo O(n) for several

special cases.

Task:

Complexity:

nX = 0, nX = n
3 , nX = 0, nX = n

3 , nX = n, nX = 0

nA = 0 nA = 0 nA = n
3 nA = n

3 nA = 0 nA = n

Determination of step direction 5.0n2 2.8n2 4.6n2 2.8n2 1.0n2 5.0n2

Determination of step length 1.0n2 1.0n2 0.7n2 0.7n2 1.0n2 0.0n2

Removing a bound 2.5n2 1.1n2 3.1n2 1.6n2 0.0n2 5.5n2

Removing a constraint7 2.5n2 1.1n2 2.4n2 1.1n2 0.0n2 2.9n2

Adding a bound 5.0n2 2.2n2 3.8n2 1.5n2 0.0n2 2.5n2

Adding a constraint 5.0n2 2.2n2 3.7n2 1.3n2 0.0n2 1.0n2

Ensuring linear independence 0.0n2 0.0n2 0.4n2 0.4n2 0.0n2 1.5n2

One complete iteration
11.0n2 5.8n2 8.8n2 4.8n2 2.0n2 7.7n2

(no linear dependence occurs)

One complete iteration
[13.5n2] 7.1n2 11.8n2 6.6n2 2.0n2 11.9n2

(linear dependence occurs)

64

4.6. Computational Complexity

PSfrag replacements

00.20.40.60.81.0
0

0.2
0.4

0.6
0.8

1.0

2n2

4n2

6n2

8n2

10n2

12n2

αA
αX

ru
n
ti
m

e
co

m
p
le

xi
ty

Figure 4.5: Runtime complexity of one complete iteration (no linear dependence occurs)

of the online active set strategy with respect to the number of fixed variables and active

constraints.

Refinements for Determing the Step Direction

As mentioned in Section 4.3.2, the computational effort for calculating the primal-dual step

direction can be reduced if the currently active bounds bX or constraints’ bounds bA (see

Eq. (4.3.2)) are independent from w0. We omit the resulting equivalents to Eqs. 4.3.11

and just summarise their runtime complexities in Table 4.3. If both active bounds and

constraints do not depend on w0 savings between 20 % and 100 % are theoretically possible

(compared with the standard approach for determing the step direction).

Table 4.3: Runtime complexity for calculating the primal-dual step direction of the online

active set strategy.

Task: Complexity:

Determination of step direction 5n2 − 2nnA − 8nnX + 2n2
A

+ 4nAnX + 4n2
X

+O(n)

Determination of step direction
5n2 − 2nnA − 9nnX + 2n2

A
+ 3nAnX + 4n2

X
+O(n)

(bounds independent)

Determination of step direction
4n2 − 3nnA − 7nnX + 3

2n
2
A

+ 4nAnX + 3n2
X

+O(n)
(bounds and constraints independent)

7The computational effort depends on which constraint is removed. For simplicity, it is assumed that

the nA

2
th row is removed from GA.

65

Chapter 4. An Online Active Set Strategy for Model Predictive Control

4.6.2 Memory Requirements

The proposed online active set strategy was implemented under the assumption that all

matrices are dense, i.e. that most entries are non-zero. This is justified if the matrices of

the open-loop optimal control problem are dense or a long prediction horizon np � 1 is

used (leading to dense entries AjB, 0 ≤ j ≤ np − 1, in Eq. (2.2.20c)). Thus, all matrices

H, A, T , Q and R are stored completely in two-dimensional arrays. For each matrix the

maximal possibly required memory is allocated and, for simplicity, no advantage of the

symmetry of H and the triangular shape of T and R is taken. Table 4.4 lists all memory

requirements of our implementation of the online active set strategy and shows that the

storage complexity is O(n2), provided that the number of constraints grows linearly in the

number of variables.

Table 4.4: Memory requirements of our implementation of the online active set strategy.

Data: H A T Q R others total

Memory: n2 nm n2 n2 n2 O(n) 4n2 + nm+O(n)

4.7 Further Refinements and Extensions

In this section we use formulation (2.3.15) instead of (4.3.1) for notational convenience.

4.7.1 Step Length Determination

Most of the runtime for determing the primal-dual step length is spent for calculating the

maximal primal step length via Eq. (4.1.10a). This calculation even takes a significant part

of the whole computational effort for one iteration if the number of constraints becomes

large (compared with the number of optimisation variables). Therefore, we present an idea

of how the determination of the maximal primal step length can be simplified.

We assume without loss of generality that every (nontrivial) constraint has Euclidean length

one, which can easily be achieved by normalising every constraint, i.e.

G′
ix ≥ b̃i(τ) ⇐⇒

G′
i

‖G′
i‖2

x ≥
b̃i(τ)

‖G′
i‖2

∀ i ∈ {1, . . . ,m} . (4.7.1)

At every primal solution along the homotopy path, τ ∈ [0, 1], and for every constraint we

define a feasibility measure:

εi(τ)
def
= G′

ix
opt(τ)− b̃i(τ) ≥ 0 ∀ i ∈ {1, . . . ,m} . (4.7.2)

Then the following holds:

Lemma 4.3 (feasibility measure): Let a normalised constraint G′
ix ≥ b̃i(τ), 1 ≤ i ≤

m, with corresponding feasibility measure as defined in Eq. (4.7.2) be given. Let this

constraint be inactive at some fixed τ1 ∈ [0, 1] along the homotopy path, i.e. εi(τ1) > 0,

and ‖∆x(τ1)‖2 + |∆b| < εi(τ1). Then the constraint remains inactive for all τ ∈ [τ1, 1]. �

66

4.7. Further Refinements and Extensions

Proof: The triangle and Cauchy-Schwarz’s inequality imply:

G′
i

(
xopt(τ1) + τ∆x(τ1)

)
−
(
bi(0) + τ∆bi

)

= εi(τ1) + τ
(
G′
i∆x(τ1)−∆bi

)

≥ εi(τ1)− τ
∣
∣G′

i∆x(τ1)−∆bi
∣
∣

≥ εi(τ1)− τ
(∣
∣G′

i∆x(τ1)
∣
∣+ |∆bi|

)

≥ εi(τ1)− τ
(∥
∥G′

i

∥
∥

2

∥
∥∆x(τ1)

∥
∥

2
+ |∆bi|

)

= εi(τ1)− τ
(∥
∥∆x(τ1)

∥
∥

2
+ |∆bi|

)

≥ εi(τ1)−
(∥
∥∆x(τ1)

∥
∥

2
+ |∆bi|

)

> εi(τ1)− εi(τ1) = 0 ,

which shows that the constraint remains inactive for all τ ∈ [τ1, 1]. �

This lemma shows that an inactive constraint whose feasibility measure is greater than

the Euclidean norm of the current primal step direction plus the absolute value of the

constraint vector step direction cannot become a blocking constraint. Hence, storing the

feasibility measure of the inactive constraints may partly avoid the calculation of the product

G′
I
∆x(τ1) in Algorithm 4.1. Since calculating the feasibility measures εi(τ1), i ∈ I(τ1),

exactly after each homotopy step would outweigh the possible benefit, only cheaply available

lower bounds εi ≤ εi(τ) ∀ τ ∈ [0, 1] are held:

(1) for τ1 = 0 define

εi
def
= εi(0) ∀ i ∈ I(0) , (4.7.3)

(2) when determing the maximum primal homotopy step length τmax consider only inac-

tive constraints 1 ≤ i ≤ m with

‖∆x(τ1)‖2 + |∆bi| ≥ εi , (4.7.4)

(3) afterwards update εi as follows:

εi
def
=

{

εi(τ1 + τmax) ‖∆x(τ1)‖2 + |∆bi| ≥ εi ,

εi − (τ1 + τmax)
(∥
∥∆x(τ1)

∥
∥

2
+ |∆bi|

)
else .

(4.7.5a)

Steps (2) and (3) are repeated until the solution of current QP (τ1 = 1) is found, and

also afterwards for solving the following QPs. Note that step (3) requires only O(m)

additional floating-point operations as all necessary quantities are already calculated in the

second step. Therefore considerable computational savings can be expected if the quadratic

program comprises many constraints that are “far” from becoming active. In our first test

example (see Chapter 5) we observed computational savings up to 10 %.

4.7.2 Extension to Sequential Quadratic Programming

Now we briefly present a possibility to extend the proposed online active set strategy to

nonlinear MPC . As mentioned in Section 2.1, in this case a nonlinear program (NLP) instead

67

Chapter 4. An Online Active Set Strategy for Model Predictive Control

of a QP has to be solved. This can be done efficiently via sequential quadratic programming

(SQP) methods (see, e.g., [65] for a detailed description). Therein a sequence of QPs is

solved at each sampling instant which differ not only in the gradient and the constraint

vector, but also in the (positive definite) Hessian matrix (approximation) and the constraint

matrix.

Let us assume that we have solved one of these QPs:

QP : min
x∈Rn

1
2x

′Hx+ x′g (4.7.6a)

s. t. Gx ≥ b , (4.7.6b)

with optimal primal-dual solution pair
(
xopt, yopt

)
and correponding optimal working set A

and now want to solve the next one:

QPnew : min
x∈Rn

1
2x

′Hnewx+ x′gnew (4.7.7a)

s. t. Gnewx ≥ bnew . (4.7.7b)

By subtracting the KKT optimality conditions (2.3.13) of both QPs it is easy to see that
(
xopt, yopt

)
, together with the same optimal working set A

8, is also the optimal solution

of the transformed QP:

−→
QP : min

x∈Rn

1
2x

′Hnewx+ x′~g (4.7.8a)

s. t. Gnewx ≥ ~b , (4.7.8b)

with

~g
def
= g − (Hnew −H)xopt + (Gnew −G) yopt , (4.7.9a)

~b
def
= b+ (Gnew −G) xopt . (4.7.9b)

Thus, it is possible to start from the optimal solution
(
xopt, yopt

)
of
−→
QP and start a

homotopy towards the solution of QPnew. In doing so the following steps have to be

performed:

1. Calculate matrix factorisations of new Hessian matrixHnew and new constraint matrix

Gnew for optimal working set A;

2. Calculate transformed gradient vector ~g and transformed constraint vector ~b via

Eqs. (4.7.9);

3. Peform a homotopy from
−→
QP to QPnew (i.e. from ~g to gnew and from ~b to bnew,

respectively) starting from the last optimal solution
(
xopt, yopt

)
.

This approach makes it possible to warm start also the QPs within a SQP algorithm and

even allows to interrupt solving the optimal control problem during one SQP iteration.

Implementing this extension of our online active set strategy will be an issue for future

work.

8Provided that Gnew
A has full row rank.

68

Chapter 5

Numerical Tests:

Chain of Spring Connected Masses

Now we want to analyse the performance of the proposed online active set strategy by solv-

ing two different problems: the first one is a challenging benchmark problem—comprising

240 variables and 1191 bounds/constraints—where a chain of spring connected masses is

regulated back into its steady-state after a strong excitation. Second, see Chapter 6, we aim

at controlling a real-world Diesel engine available for experiments at the Institute for Design

and Control of Mechatronical Systems in Linz, Austria. The results are also compared with

those of a standard active set QP solver and the explicit (offline) approach.

5.1 Model Description and Problem Formulation

Our first test example is a variant of a recently published benchmark problem [86], [87].

Since it was deeply analysed in [86] we outline only its main characteristics.

We consider a chain consisting of nine balls which are connected by eight Hookian springs

in between and two further Hookian springs at each end. Each ball i, 1 ≤ i ≤ 9, is thought

to be concentrated in a single point xi ∈ R
3 with mass m ∈ R>0 (in kg). All springs are

identical having spring constant d ∈ R>0 (in N/m) and rest length L ∈ R>0 (in m). One

end of the chain is fixed at a certain point x0 ∈ R
3, whereas the free end of the spring at

the other end of the chain is freely movable (its position is denoted by x10 ∈ R
3). The

whole chain of spring connected masses is situated in a homogeneous gravitational field

decribed by its acceleration vector g ∈ R
3 (in m/s2).

Without loss of generality, we let x0 def
=

�
and obtain for all times t ∈ T

def
= [0,∞) the

following (second-order) ODE system from Newton’s laws of motion:

ẍi(t) =
F i,i+1(t)− F i−1,i(t)

m
+ g ∀ i ∈ {1, . . . , 9} , (5.1.1a)

where F i,i+1(t)
def
= d

(

1−
L

‖xi+1(t)− xi(t)‖2

)
(
xi+1(t)− xi(t)

)
(5.1.1b)

denotes the force acting on the ith mass due to the spring between the ith and the (i+1)th

mass (pointing from xi to xi+1). Via standard techniques, this system can be reformulated

69

Chapter 5. Numerical Tests: Chain of Spring Connected Masses

as a first-order, i.e. involving only first time derivatives, ODE system by introducing the

velocity vectors ẋi(t) ∈ R
3, 1 ≤ i ≤ 9, of the masses as additional differential variables.

The chain is controlled by manipulating the three velocity components of the free end at

point x10, leading to three additional differential equations

ẋ10(t) = u(t) , (5.1.1c)

where u : T → R
3 denotes the process inputs as described in Section 2.1. By defining

x(t)
def
=
(
x1(t)′, ẋ1(t)′, . . . , x9(t)′, ẋ9(t)′, x10(t)′

)
′ ∈ R

57 (5.1.2)

system (5.1.1) becomes a nonlinear model of the form:

ẋ(t) = f
(
x(t), u(t)

)
∀ t ∈ T . (5.1.3)

In order to obtain a linear process model we linearise system (5.1.1) at a steady-state. It

can be shown that all velocities of the masses and the controllable end of the chain ẋi(t),

1 ≤ i ≤ 10, must be zero at a steady-state. Thus, if we fix the position of the free end of

the chain, i.e. x10(t)
def
= xend ∈ R

3 for all t ∈ T, the unique stable steady-state (x̂,
�
) ∈ R

60

satisfying
�

= f
(
x̂,

�)
(5.1.4)

is easily obtained. Afterwards, the system matrices of the linear process model (Eqs. (2.2.1))

are definied as

A
def
=

∂f
(
x̂,

�)

∂x(t)
and B

def
=

∂f
(
x̂,

�)

∂u(t)
(5.1.5)

as well as

C
def
= Id57 . (5.1.6)

−10123456
−1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

PSfrag replacements

x

y

z

Figure 5.1: Chain of spring connected masses at its steady-state for xend = (5, 0, 0). (The

controllable free end of the chain is symbolised by a black ball.)

70

5.1. Model Description and Problem Formulation

The (quadratic) objective function is chosen such that deviations from the steady-state
(x̂,

�
) are penalised:

min
x(t), u(t)

1

2

t0+tp∫

t0

(
x(t)− x̂

)
′












�
β · Id3

. . .

�
β · Id3

α · Id3












︸ ︷︷ ︸

=
def

Q

(
x(t)− x̂

)
+u(t)′





γ

γ

γ





︸ ︷︷ ︸

=
def

R

u(t) dt ,

(5.1.7)

with α, β, γ ∈ R>0. This choice implies Q ∈ S57
�0 and R ∈ S3

�0, a terminal penalty weight

matrix is not used (i.e. P
def
=

�
∈ S57

�0).

Finally, we impose bounds on the process inputs

−1 ≤ ui(t) ≤ 1 ∀ i ∈ {1, 2, 3} (5.1.8)

and thus yielding the benchmark example from [86]. Additionally, we place a vertical wall

(parallel to the second coordinate axis) near to the chain at steady-state (x̂,
�
); and we

choose xend such that the chain at this steady-state is hanging parallel to this wall (see

Figure 5.1). Then we introduce lower bounds on the second component of the position of

all balls, i.e. ξwall ≤ x
i
2 for all 1 ≤ i ≤ 9, in order to prevent the chain from hitting the wall

while it is controlled. In the notation of Definition 2.3, these constraints together with the

bounds (5.1.8) read










ξwall

...

ξwall

−
�

−
�











︸ ︷︷ ︸

=
def

l

≤











e′2
�

. . .
...

e′2
�

� �

� �











︸ ︷︷ ︸

=
def

M

x(t) +










�

�

�

Id3

−Id3










︸ ︷︷ ︸

=
def

N

u(t) , (5.1.9)

with the second coordinate vector e2 ∈ R
3.

The continuous-time open-loop optimal control problem (5.1.1), (5.1.7), (5.1.9) is discre-

tised into a finite optimisation problem, see Section 2.2, by dividing the prediction horizon

of length tp
def
= 16 s into np

def
= 80 equidistant control intervals. The dimensions of the

resulting parametric quadratic program (after the condensing procedure described in Sec-

tion 2.2.3) are given in Table 5.2. Some numerical properties of this parametric quadratic

program are summarised in Table 5.3; the used numerical values of all the above mentioned

model constants are listed in Table 5.1.

Table 5.1: Numerical constants for the chain example.

Constant: m d L g xend α β γ ξwall

Value: 0.03 1 0.0333 (0, 0,−9.81) (5, 0, 0) 50 2 0.02 −0.2

71

Chapter 5. Numerical Tests: Chain of Spring Connected Masses

Table 5.2: Problem dimensions (after condensing) of the chain example.

Quantity: Dimension:

Dimension of initial value vector 57

Number of variables 240

Number of bounds 480

Number of constraints 711

Table 5.3: Matrix properties of the chain example.

Property: Value:

Condition number of Hessian matrix H 1.01 · 104

Maximum eigenvalue of Hessian matrix H 5.26 · 100

Minimum eigenvalue of Hessian matrix H 5.20 · 10−4

Number of nonzero elements of Hessian matrix H 57600 (100.0 %)

Condition number of constraint matrix G 9.57 · 103

Numerical rank1 of constraint matrix G 79

Number of nonzero elements of constraint matrix G 84368 (49.6 %)

5.2 Numerical Results

We simulate in a closed-loop manner integrating the nonlinear ODE system with high

accuracy in order to obtain the movements of the chain. Since we control the chain using

a linear model, feedback control is mandatory even in this nominal setup (i.e. without any

noise or measurement errors). Starting at the steady-state corresponding to xend = (5, 0, 0),

a strong perturbation is exerted to the chain by moving the free end with a constant velocity

(−1.5, 1.0, 1.0) m/s for 3 seconds. Then the MPC controller takes over and tries to return

the chain into its original steady-state while not hitting against the wall. (Note that during

the initial pertubation phase the optimiser is already running but the calculated optimal

control action is not given back to the chain.) This scenario is simulated on the time

horizon [0, 20] s using a constant sampling time of δ
def
= 0.2 s, i.e. σ

def
= 1 in Eq. (2.2.9).

It was tested with four different methods: first, we solve every QP exactly using three

alternative methods:

• qpsol with cold start, i.e. initialisation with an empty working set and the origin as

an intial guess for the solution,

• qpsol with warm start, i.e. the solver is initialised with the solution and corresponding

working set of the previous QP (but without providing any matrix factorisations),

• online active set strategy as presented in Chapter 4 where we follow every homotopy

path until the exact solution is reached.

1Number of (normalised) singular values greater than 10−15; see [46] for a discussion on determing the

rank of a matrix numerically.

72

5.2. Numerical Results

Second, we allow for an inexact QP solution by using the

• online active set strategy and limiting the maximum number of working set changes

(as described in Section 4.2) to 10.

qpsol is a very common primal active set QP solver based on the null space method

(see Section 3.1.1). It is written for QPs with dense matrices and solves an auxiliary

LP for finding an initial feasible point during phase I. A description of the FORTRAN

implementation is given in [62].

Figure 5.2 illustrates the optimally controlled chain at four particular time instants. The

number of bounds and constraints’ bounds active at the solution of each QP as well as the

Euclidean norm of the QP solution vector are depicted in Figure 5.3 for the case of exact

QP solution.

The number of QP iterations, i.e. the number of working set recalculations in the case of

the online active set strategy, and runtimes2 per sampling instant are reported in Table 5.4

and illustrated in Figures 5.4 and 5.5, respectively.

−10123456

−1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

PSfrag replacements

xy

z

(a) At beginning of control phase (t = 3 s)

−10123456

−1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

PSfrag replacements

xy

z

(b) Early moment in control phase (t = 4 s)

−10123456
−1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

PSfrag replacements

x

y

z

(c) Softly touching the wall (t = 5.4 s)

−10123456
−1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

PSfrag replacements

x

y

z

(d) Almost at steady-state (t = 20 s)

Figure 5.2: Optimally controlled closed-loop trajectory of the chain with exact QP solution.

73

Chapter 5. Numerical Tests: Chain of Spring Connected Masses

0 5 10 15 20
0

10

20

30

40

50

60

PSfrag replacements

time [s]

n
u
m

b
er

of
ac

ti
ve

b
ou

n
d
s

(a) Number of active bounds (grey) and active

constraints’ bounds (black).

0 5 10 15 20
0

2

4

6

8

10

PSfrag replacements

time [s]

∥ ∥
x

o
p
t∥ ∥

2

(b) Euclidean norm of the QP solution vector.

Figure 5.3: Properties of the exact QP solution for the optimally closed-loop controlled

chain.

Table 5.4: Comparison of standard QP solver and online active set strategies with respect

to runtimes and number of iterations.

Method:
Maximum Average Maximum no. Average no.

runtime [ms] runtime [ms] of iterations of iterations

qpsol (cold start) 1006.8 223.5 60 10.4

qpsol (warm start) 969.6 140.9 71 7.1

online active set strategy
74.8 18.5 14 3.3

(fully converged)

online active set strategy
51.6 16.8 10 3.1

(at most 10 iterations)

The solution, and thus also the optimal objective function value, are identical when using

qpsol or the fully converged online active set strategy. Moreover, all QPs are feasible and

so the optimal solution is feasible in these cases, too. However, note that tiny infeasibilities

of the “real” chain with respect to constraint violations may occur between two sampling

instances because the model is not exact. A qualitatively different form of infeasibilities

can occur if the real-time variant of the online active set strategy is used: if the homotopy

towards the new QP solution is stopped prematurely the solution of the intermediate QP

might be suboptimal and infeasible with respect to the current QP that one wants to solve.

2All simulations were performed on an Intel Pentium 4 processor with 2.53 GHz (single core), 512 kB

L2 cache and 1 GB main memory using gcc 3.3.4 with compiler flag -O3. The runtimes are obtained from

multiple measurements with the linux-specific function gettimeofday() and should be accurate within some

hundred microseconds.

74

5.2. Numerical Results

In the chain test scenario these possible infeasibilities are restricted to constraint violations

because all bounds are equally fixed for all sampling times and their fulfilment is thus not

affected by the current position along the homotopy path. Table 5.5 compares the MPC

objective function over the whole simulation horizon [0, 20] s as well as the maximal “real”

constraint violation of the solutions of the exact online active set strategy (or qpsol) and

the inexact one.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(a) Standard QP solver (grey: cold start, black:

warm start).

0 5 10 15 20
0

5

10

15

20

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 10 iterations).

Figure 5.4: Number of iterations per sampling instant for chain example.

0 5 10 15 20
0

500

1000

1500

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(a) Standard QP solver (grey: cold start, black:

warm start).

0 5 10 15 20
0

20

40

60

80

100

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 10 iterations).

Figure 5.5: Runtimes per sampling instant for chain example.

75

Chapter 5. Numerical Tests: Chain of Spring Connected Masses

Table 5.5: Optimal MPC objective function value and maximum “real” infeasibility (con-

straint violation).

Method:
Optimal objective Maximum “real”

function value constraint violations

Exact QP solution 1747.07 0.0019

Inexact QP solution using the

online active set strategy 1746.72 0.0056

(at most 10 iterations)

Decreasing the Sampling Time to δ = 0.1 s

As the runtimes of the online active set strategy are well below 0.2 s, we can reduce the

sampling time to δ = 0.1 s, i.e. σ
def
= 2 in Eq. (2.2.9), in order to react faster to inaccuracies

due to the mentioned model-plant mismatch (note that the discretisation of the optimal

control problem is not changed). We also simulate this slightly different setup using qpsol,

even if this solver is not able to solve the occuring optimal control problems within this

shorter time period.

We do not illustrate the optimised trajectories and the properties of the QP solutions since

they are very similar to that depicted in the Figures 5.2 and 5.3. The number of QP it-

erations and runtimes per sampling instant are summarised in Table 5.6 and illustrated in

Figures 5.6 and 5.7, respectively. Again, the MPC objective function over the whole simu-

lation horizon [0, 20] s (divided by two) as well as the maximal “real” constraint violation

of the solutions of the exact online active set strategy (or qpsol) and the inexact one are

reported in Table 5.7.

0 5 10 15 20
0

50

100

150

200

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(a) Standard QP solver (grey: cold start, black:

warm start).

0 5 10 15 20
0

5

10

15

20

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 6 iterations).

Figure 5.6: Number of iterations per sampling instant for chain example (δ = 0.1 s).

76

5.2. Numerical Results

0 5 10 15 20
0

500

1000

1500

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(a) Standard QP solver (grey: cold start, black:

warm start).

0 5 10 15 20
0

20

40

60

80

100

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 6 iterations).

Figure 5.7: Runtimes per sampling instant for chain example (δ = 0.1 s).

Table 5.6: Comparison of standard QP solver and online active set strategies with respect

to runtimes and number of iterations (δ = 0.1 s).

Method:
Maximum Average Maximum no. Average no.

runtime [ms] runtime [ms] of iterations of iterations

qpsol (cold start) 1005.9 204.1 62 10.1

qpsol (warm start) 1487.1 89.2 166 3.4

online active set strategy
57.8 12.2 11 1.9

(fully converged)

online active set strategy
35.5 13.7 6 2.3

(at most 6 iterations)

Table 5.7: Optimal MPC objective function value and maximum “real” infeasibility (i.e.

constraint violation) for δ = 0.1 s.

Method:
Optimal objective Maximum “real”

function value constraint violations

Exact QP solution 1658.25 0.0041

Inexact QP solution using the

online active set strategy 1686.26 0.0108

(at most 6 iterations)

77

Chapter 5. Numerical Tests: Chain of Spring Connected Masses

5.3 Summary of the Results

The most obvious observation is that the runtimes of the fully converged online active

set strategy are significantly—more than an order of magnitude— shorter than that of

qpsol, even if qpsol is performing warm starts. This is true for both the average and the

more crucial maximum runtime. Thus, qpsol is far from being able to control the chain

within the given sampling times, whereas the proposed online active set strategy meets

the real-time requirements with ease3. Apparently, this results from a smaller number of

QP iterations (the effort for one iteration of qpsol and the online active set strategy is

comparable), but this fact cannot fully explain the enormous difference.

Some other things are also important: first, the primal solution of the preceding QP often

is not a feasible initial value for the next QP, making a phase I necessary. Within the

initial seven seconds of the simulation with δ = 0.2 s (δ = 0.1 s), up to 13 (6) phase I LP

iterations4 were necessary if the warm start feature of qpsol is used. Instead, a cold start

requires a phase I quite rarely (at most one LP iteration) since the origin is often a primal

feasible point5. Second, our online active set strategy can use both matrix factorisations

from the previous QP, whereas qpsol has to calculate them from scratch even if an initial

guess for the active set is provided via the warm start feature. Finally, the runtimes of

qpsol may suffer from some overhead because it also handles indefinite QPs. But even

if a special positive definite QP variant of qpsol which is also able to maintain matrix

factorisations would have been used, a considerable speedup of the proposed online active

set method can be expected: a factor of 3-7 compared with cold starting and 2-4 compared

with warm starting seems to be realistic according to the data given in Tables 5.4 and 5.6.

Besides the comparison with qpsol, the results of the online active set strategy (and its real-

time variant) are interesting for themselves: first, reducing the sampling times also reduces

both the maximum and the average number of required active set changes per sampling

instant. This is a useful property from an application point of view because shorter sampling

times normally result in a improved controller performance. Second, a proper restriction of

the number of working set changes using the real-time variant leads to a further decrease

of the maximum runtime (the average runtime is only slightly affected because the working

set changes are more or less postponed to later sampling instants) without becoming much

suboptimal or infeasible. For δ = 0.2 s the optimal objective function value of the real-time

variant is even a little bit better due to a slight increase of infeasibilities; for δ = 0.1 s the

“real” infeasibilities remain very small and only 1.7 % loss of optimality in the objective

function value is oberserved. Of course, a theoretical performance guarantee cannot be

given so far.

Finally, we remark that this test problem with a state-space dimension of 57 and far more

than 3240 ≈ 10114 possible active sets is by no means tractable with the explicit approach

(as presented in Section 2.3.2).

3The reported runtimes do not include the effort for calculating the current gradient vector g(w0) and

constraint vector b(w0) since it is almost negligible compared with the remaining online computations.
4Using δ = 0.1 s, warm started qpsol performs 70 LP iterations and afterwards 166 QP iterations at

t = 4.2 s. Since this simulation phase is quite crucial, this outlier could result in a heavy crash into the wall.
5Unfortunately, besides the number of LP iterations, qpsol provides no possibility to obtain the runtime

required for phase I.

78

Chapter 6

Numerical Tests:

Real-World Diesel Engine

6.1 Model Description and Problem Formulation

In this second test example we aim at controlling a real-world direct injection turbo charged

Diesel engine on a dynamical testbench at the Institute for Design and Control of Mecha-

tronical Systems of the Johannes Kepler University in Linz (Austria), see Figure 6.1.

In order to minimise the emissions we control the so-called airpath of the Diesel engine,

which is depicted in Figure 6.2: fresh air streams through the compressor into the intake

manifold inside the engine. From there it flows into the cylinders where the fuel is burnt

for producing the engine torque. Afterwards, the exhaust gases (especially NOx and soot)

stream into the exhaust manifold from where they can flow in two directions: one part

of them drives a variable geometry turbocharger VGT which spins up the compressor by

means of a common shaft, and thus strongly influences the pressure in the intake manifold;

the other part flows through the exhaust gas recirculation (EGR) valve and mixes with the

fresh air. This already burnt gas acts as an inert gas during combustion which lowers the

peak temperature and hence reduces the NOx emissions. In modern Diesel engines both

the opening of the EGR valve as well as the angle of the inlet guide vanes of the VGT can

be controlled.

Modelling of the combustion process naturally leads to partial differential equations, where

temporal as well as spatial derivatives are present and each explosion needs to be simulated—

a nearly impossible task for today’s computing capacity. Another possibility is the usage

of so-called mean value models (without any spatial effects) leading to nonlinear ODE

systems. A mean value model for Diesel engines can be found in [52], a similar one for

gasoline engines is developed in Appendix C.

In order to employ our online active set strategy we need a linear process model, which

could be derived by linearising the nonlinear ODE system from a mean value model at a

certain point. Instead, we follow the ideas presented in [66], [67] and directly use linear

identification techniques (see [58] for an introduction). To this end a discrete-time linear

state-space model (2.2.10c)-(2.2.10d) is obtained from real measurements by fitting the

input to the output data (via a least-squares-like prediction error approach).

79

Chapter 6. Numerical Tests: Real-World Diesel Engine

Figure 6.1: Diesel engine testbench at the University in Linz.

PSfrag replacements

EGR

valve

intake manifold

exhaust manifold

cylinders

compressor

VGT

Figure 6.2: Schematic diagram of the Diesel engine airpath (inspired by [52])

80

6.1. Model Description and Problem Formulation

Since the Diesel engine’s dynamics are highly nonlinear it is not possible to derive a single

linear model for the whole operating range (i.e. engine speed from 800 to 4500 rpm and

fuel injection between 0 and 50 mg/stroke). Therefore the operating range is empirically

divided into twelve small operating areas and a linear process model is identified for each

of them. The subsequent validation of all models with real engine data showed that the

prediction quality of most of the models for the Diesel engine in Linz is good.

Instead of minimising the emissions directly, two process outputs—namely the mass air

flow (MAF) through the compressor and the manifold absolute pressure (MAP) inside the

intake manifold—are regulated to certain setpoints. These setpoints depend on the current

operating point and are optimised (offline) with respect to emissions, fuel consumption and

torque.

Thus, for each of the twelve operating areas we obtain an identified model of the following

form:

xk+1 = Aidxk +Eidxp
k +Biduk ∀ k ∈ N ∪ {0} , (6.1.1a)

yk = C idxk ∀ k ∈ N ∪ {0} , (6.1.1b)

where Aid ∈ R
2×2, Bid ∈ R

2×2, C id ∈ R
2×2. The inputs uk ∈ R

2 describe the position

of the EGR and the VGT (normalised to lie between 0 and 100), the outputs yk ∈ R
2

contain the values of MAF and MAP. Moreover, the system states depend (via the matrix

Eid ∈ R
2×2) on the current engine speed and the amount of injected fuel. They are treated

as known parameters which are fixed over the whole prediction horizon; for each time step

we summarise them in the vector xp
k ∈ R

2.

Furthermore, the mismatch

xe
k

def
= ymeas

k − yk ∀ k ∈ N ∪ {0} (6.1.2)

between the measured and the predicted outputs is estimated via a linear Kalman filter

(see [66] for details) and is also assumed to be constant over the whole prediction horizon.

These modifications lead to the following augmented linear process model:





xk+1

xp
k+1

xe
k+1



 =





Aid Eid �

�
Id2

�

� �
Id2









xk
xp
k

xe
k



+





Bid

�

�



uk ∀ k ∈ N ∪ {0} , (6.1.3a)

yk =
(

C id �
Id2

)





xk
xp
k

xe
k



 ∀ k ∈ N ∪ {0} . (6.1.3b)

Finally, two further augmentations of the state space are necessary: first, we introduce

the desired setpoint, or reference, values of MAF and MAP as additional parameters, say

xr
k ∈ R

2 (= yref in Eq. (2.2.6)), as they are constant for one optimisation problem but may

vary from one QP to the next. Second, we do not want to control EGR and VGT directly

but their rates of change ∆uk ∈ R
2 (uk = uk−1 + ∆uk), instead. Thus, we end up with

81

Chapter 6. Numerical Tests: Real-World Diesel Engine

an ODE system consisting of ten states:









xk+1

xp
k+1

xe
k+1

xr
k+1

uk










=










Aid Eid � �
Bid

�
Id2

� � �

� �
Id2

� �

� � �
Id2

�

� � � �
Id2



















xk
xp
k

xe
k

xr
k

uk−1










+










Bid

�

�

�

Id2










∆uk , (6.1.4a)

yk =
(

C id �
Id2

� �
)










xk
xp
k

xe
k

xr
k

uk










∀k ∈ N ∪ {0} . (6.1.4b)

After this transformation it is possible to introduce bounds on the values as well as on the

rate of change of EGR and VGT1:
(
−10

−5

)

≤ ∆uk ≤

(
3.3

5

)

∀ k ∈ N ∪ {0} , (6.1.5a)

(
0

10

)

≤ uk ≤

(
100

70

)

∀ k ∈ N ∪ {0} . (6.1.5b)

The lower/upper bounds on the rate of the EGR valve have different absolute values because

it has to work against a spring for opening.

The objective function2 is chosen as:

min
x?

k0
,...,x?

k0+np
,

yk0
,...,yk0+np

,

uk0
,...,uk0+np

∆uk0
,...,∆uk0+np−1

1

2

k0+np−1
∑

k=k0

(yk−yref)
′

(
2

2

)

︸ ︷︷ ︸

=
def

Q

(yk−yref) + ∆uk
′

(
1

1

)

︸ ︷︷ ︸

=
def

R

∆uk dt , (6.1.6)

where x?i denotes xi, x
p
i , x

e
i or xr

i for all k0 ≤ i ≤ k0 + np. The prediction horizon of

tp
def
= 4 s length is divided into np

def
= 9 equidistant control intervals, each of 50 ms length,

and a tenth one with length 3.55 s.

The dimensions of the resulting parametric quadratic program (after the condensing pro-

cedure described in Section 2.2.3) for the fifth operating area are given in Table 6.1. Some

numerical properties of this parametric quadratic program are summarised in Table 6.2.

Table 6.1: Problem dimensions (after condensing) of the Diesel engine example.

Quantity: Dimension:

Dimension of initial value vector 10

Number of variables 20

Number of bounds 40

Number of constraints 40

1The given numerical values are valid for the fifth operating area (engine speed: 2100-2500 rpm, injected

fuel: 0-30 mg/stroke).
2When comparing the input and output weights R and Q, note that the inputs are almost two orders of

magnitude smaller than the outputs.

82

6.2. Numerical Results

Table 6.2: Matrix properties of the Diesel engine example, fifth operating area.

Property: Value:

Condition number of Hessian matrix H 4.64 · 104

Maximum eigenvalue of Hessian matrix H 1.00 · 100

Minimum eigenvalue of Hessian matrix H 2.16 · 10−5

Number of nonzero elements of Hessian matrix H 400 (100.0 %)

Condition number of constraint matrix G 1.32 · 101

Numerical rank of constraint matrix G 20

Number of nonzero elements of constraint matrix G 110 (27.5 %)

6.2 Numerical Results

We perform closed-loop simulations using the linear model of the fifth operating area (engine

speed: 2100-2500 rpm, injected fuel: 0-30 mg/stroke). The engine speed as well as the

amount of injected fuel is kept constant—at 2300 rpm and 15 mg/stroke, respectively—and

the controller shall track two step changes of the setpoints for MAF and MAP. The Diesel

engine is simulated by integrating the linear model and adding (uniformly distributed) white

noise3 to the measured (i.e. simulated) MAF and MAP values; a linear Kalman filter is used

to estimate the true values. Moreover, white noise is also added to the values of speed and

injected fuel as they have to be measured in practice. Finally, the sampling time is chosen

to be δ = 50ms. This setup corresponds to that described in [66] and was implemented in

a Matlab/Simulink environment [59] (see Figure 6.3).

As in the chain benchmark problem (cp. Chapter 5), the simulations were conducted by

using:

• qpsol with cold and warm starts,

• online active set strategy with exact QP solution and with the number of working set

changes limited to 10 and 5, respectively.

1
u_opt

OASES
1

w_0

Figure 6.3: Implementation of the online active set strategy (OASES) compiled into a Mat-

lab/Simulink block.

3We used the same noise sequence for all simulations by starting the random number generator with a

fixed seed value.

83

Chapter 6. Numerical Tests: Real-World Diesel Engine

Moreover, the explicit approach (as described in Section 2.3.2) was employed. In doing so,

we encountered difficulties due to exponential complexity of the required precalculation: the

Matlab Hybrid Toolbox [6] failed to precalculate an explicit controller for control horizon

lenghts greater than two (although this most likely resulted from an internal error); for

np = 5 it stopped after several minutes and more than 15000 regions found with the message

“unexpected degeneracy condition”. Since a control horizon of length np = 10 could lead

to about 2.6·1017 critical regions4, 15000 should be a strongly underestimating lower bound

on their actual number. So, if we make the conservative assumption that every region is

described by 10 inequalities, even 15000 critical regions would require 15000 ·102 ·8 byte ≈

12Mbyte of memory (about 150Mbyte for all 12 linear models!). And if a linear search

through all regions is performed online (as implemented in the Hybrid Toolbox), half of them

need to be checked on average which requires about one million floating-point operations.

On a Pentium IV processor this may take some hundred microseconds, a value that is easily

achieved using our online active set strategy, as we will see soon.

Therefore, we compare the results of the online computation (using a control horizon of

10 intervals) with an explicit controller based on only one control interval. This controller

comprises 25 critical regions and was used in [66], [67] to perform real-world closed-loop

experiments on the above-mentioned Diesel engine.

We simulated on the time horizon [0, 30] s with a constant sampling time of δ
def
= 50ms,

starting from a steady-state. The reference values used for MAF and MAP are depicted

in Figure 6.4, together with the optimised outputs. The optimised inputs are shown in

Figure 6.5. Since the output trajectories as well as the inputs are nearly identical for all

online QP solutions (i.e. also for the inexact QP solution using the real-time variant of the

online active set strategy), only the values for exact online QP solution and that of the

explicit approach (with one control interval) are compared. The number of bounds and

constraints’ bounds active at the solution of each QP as well as the Euclidean norm of the

QP solution vector are depicted in Figure 6.6 for the case of exact online QP solution.

The number of QP iterations, i.e. the number of working set recalculations in case of the

online active set strategy, and runtimes5 per sampling instant are illustrated in Figures 6.7

and 6.8, respectively. The maximum number of iterations, the maximum runtime and the

MPC objective function evaluated over the whole simulation horizon are summarised in

Table 6.3. In case of the real-time variant (limited to five working set changes) of the

online active set strategy the value of the EGR opening becomes infeasible at one sampling

instant (−1.8 at 10.1 s) and is therefore clipped to 0.

Finally, we want to mention that both matrix factorisations remained very accurate during

the whole simulation: their maximum deviation from their exact counterparts lay below

4It this case the maximum number of different optimal active set/critical regions can be calculated via

2np
X

j=0

j
X

k=0

2k

2np

k

!

· 2j−k

2np

j − k

!

,

using a simple combinatorial argument.
5All simulations were performed on an Intel Pentium 4 processor with 2.53 GHz (single core), 512 kB

L2 cache and 1 GB main memory using gcc 3.3.4 with compiler flag -O3. The runtimes are obtained from

a series of measurements with the linux-specific function gettimeofday() and should be accurate in the

order of 10-50 microseconds.

84

6.2. Numerical Results

machine precision. Furthermore, as expected for this small-scale example, computational

overhead for the alternative step length determination (as described in Section 4.7.1) out-

weighed the benefit.

0 5 10 15 20 25 30
660

680

700

720

740

760

PSfrag replacements

time [s]

M
A

F
[m

g
/s

tr
ok

e]

(a) Optimised MAF values (grey: explicit ap-

proach, black: exact online QP solution, dashed:

reference value).

0 5 10 15 20 25 30

1200

1220

1240

1260

1280

PSfrag replacements

time [s]
M

A
P

[h
P
a]

(b) Optimised MAP values (grey: explicit ap-

proach, black: exact online QP solution, dashed:

reference value).

Figure 6.4: Optimised outputs for Diesel engine example.

0 5 10 15 20 25 30

0

10

20

30

40

50

60

PSfrag replacements

time [s]

E
G

R

(a) Optimised EGR values (grey: explicit ap-

proach, black: exact online QP solution, dashed:

lower bound).

0 5 10 15 20 25 30
20

30

40

50

60

70

PSfrag replacements

time [s]

V
G

T

(b) Optimised VGT values (grey: explicit ap-

proach, black: exact online QP solution, dashed:

upper bound).

Figure 6.5: Optimal controls for Diesel engine example.

85

Chapter 6. Numerical Tests: Real-World Diesel Engine

5 10 15 20 25
0

5

10

15

20

PSfrag replacements

time [s]

n
u
m

b
er

of
ac

ti
ve

b
ou

n
d
s

(a) Number of active bounds (grey) and active

constraints’ bounds (black).

5 10 15 20 25
0

5

10

15

20

25

30

PSfrag replacements

time [s]

∥ ∥
x

o
p
t∥ ∥

2

(b) Euclidean norm of online QP solution vector.

Figure 6.6: Properties of the exact online QP solution for the optimally closed-loop con-

trolled Diesel engine.

Table 6.3: Comparison of an standard online QP solver, the online active set strategies

as well as the explicit approach with respect to runtimes, number of iterations and MPC

objective function value.

Method:
Maximum Maximum no. Optimal objective

runtime [ms] of iterations function value

qpsol (cold start) 3.03 21 4851.7

qpsol (warm start) 2.67 21 4851.7

online active set strategy
0.41 22 4851.7

(fully converged)

online active set strategy
0.22 10 4851.8

(at most 10 iterations)

online active set strategy
0.13 5 4851.2

(at most 5 iterations)

explicit approach < 0.01 – 6497.3

86

6.3. Summary of the Simulation Results

5 10 15 20 25
0

5

10

15

20

25

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(a) Standard online QP solver (grey: cold start,

black: warm start).

5 10 15 20 25
0

5

10

15

20

25

PSfrag replacements

time [s]

n
u
m

b
er

of
it
er

at
io

n
s

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 5 iterations).

Figure 6.7: Number of iterations per sampling instant for Diesel engine example.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(a) Standard online QP solver (grey: cold start,

black: warm start).

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

PSfrag replacements

time [s]

ru
n
ti
m

e
[m

s]

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at

most 5 iterations).

Figure 6.8: Runtimes per sampling instant for Diesel engine example.

6.3 Summary of the Simulation Results

The most important observation from a practical point of view is that reference tracking

performance is considerably improved by using many control intervals. The period required

for reaching a new MAF/MAP setpoint after a step change is greatly reduced, from about

three to below one second, as can be seen in Figure 6.4. Since not only absolute bounds

but also limits on the rate of change of the manipulated variables are considered within

87

Chapter 6. Numerical Tests: Real-World Diesel Engine

the optimisation problem, it should be possible to directly realise these improvements in

practice. The necessary optimal control problem formulation with an increased number of

degrees of freedom calls for a fast online QP solver, instead of an explicit approach, as

argued above.

Comparing the results of qpsol and our online active set strategy shows that the number

of iterations for exact QP solution are quite similar. This might be due to the fact that

the constraints’ bounds exhibit a very special structure—EGR and VGT are artificial states,

introduced in order to deal with their (discretised) derivatives. This probably leads to a

special geometry of the partition of the set of feasible parameters and thus to similar steps

of the conventional primal method and the proposed online active set strategy. The signifi-

cantly higher runtime of qpsol at the first setpoint change is not yet fully understood. This

effect only occurs if many constraints become active. It also persists when the dimension

of the QP is varied. At the second setpoint change, when only bounds become active, an

equal number of iterations also leads to comparable runtimes.

Nevertheless, this example clarifies the advantages of the real-time variant of the online

active set strategy: almost without becoming suboptimal or infeasible, it was possible

to reduce the number of working set changes by a factor of four (compared with exact

QP solution)! This result justifies the conjecture that it might not be necessary to solve

every QP exactly if the initial state is disturbed by measurement noise. Reducing the

computational runtime in this way makes online QP solution definitely viable for this kind

of problem, even if cheap (and hence slow) controller CPUs are used.

6.4 Real-World Experiments

The simulation results presented so far encourage our aim to perform closed-loop real-world

experiments at the testbench in Linz. Preliminary tests, using a simplified implementation

of our online active set strategy which could handle bounds on the inputs only, were already

performed in spring 2006. For this purpose, the C++ source code was integrated into a

Matlab/Simulink controller and implemented on the rapid prototyping hardware system

dSPACE [28], which directly controls the engine. The dSPACE hardware is about five to

ten times slower than a common Pentium IV processor; thus, when looking at the runtimes

in Section 6.2, one should increase them in mind by one order of magnitude (which means

at most 4ms for the online active set strategy).

Another question is how to switch the controller between different models for different

operating areas. On the one hand, it is possibile to let several QP solvers be running at

the same time; on the other hand, if these switches do not occur too frequently, a cold

start in the new operating area seems feasible. A third possibility is to apply the extension

of our online active set strategy to problems with varying QP matrices (as described in

Section 4.7.2). This might make sense due to the expectation that the active set will

be similar across neighbouring operating areas. The most appropriate approach for this

application would be to allow the QP matrices to change in every iteration, which directly

leads to nonlinear MPC .

88

Chapter 7

Conclusions and Outlook

In this Diplom thesis, we presented the main concepts of model predictive control and

showed that the resulting optimal control problems can be formulated as quadratic pro-

grams, provided that the objective function is quadratic and the ODE model as well as the

constraints are linear. It was shown that these quadratic programs depend linearly on the

current state of the controlled process; the special structure of these parametric quadratic

programs was analysed and some of their important properties were presented. We also

outlined several existing methods for solving these quadratic programs, namely active set

methods and the so-called explicit approach.

After these theoretical preparations a new online active set strategy for the fast solution

of (parametric) quadratic programming problems arising in model predictive control was

developed. This strategy builds on ideas from parametric optimisation and fully exploits

the knowledge of the solution of the previous quadratic program making the assumption that

the active set does not change much from one quadratic program to the next. Furthermore,

we showed how this strategy can be modified to make it suitable for real-time applications.

We addressed various important ingredients for an efficient implementation of our method

and also described procedures for dealing with degenerated QPs. Complexity issues and a

possbile extension of the proposed method to nonlinear model predictive control problems

were discussed.

Finally, we investigated the performance of our C++ implementation of the online active

set strategy with two test examples: a challenging medium-scale benchmark problem and

a small-scale problem for controlling a real-world Diesel engine in a closed-loop manner. In

these examples, our strategy turned out to be significantly faster than a standard active

set QP solver (even if the conventional warm start technique is used) while overcoming the

prohibitive limitations of the explicit approach to MPC optimisation.

Future work will go into three major directions: (i) improvements and performance tests

of the current implementation, (ii) extensions of the online active set strategy to other

problem classes, and (iii) its application to real-world control problems.

(i) First, some refinements of the current implementation from a theoretical as well as

from a software engineerical point of view are still conceivable. For example, it might

be possible to incorporate so-called long steps when an active constraints swaps within

one sampling period from its upper to its lower bounds (or vice versa), which causes

89

Chapter 7. Conclusions and Outlook

two—unnecessary from hindsight—active set changes within our current algorithm.

Also a theoretical bound on the suboptimality if the homotopy is stopped prematurely

would be desirable. Furthermore, a more extensive benchmarking will show if our

strategy is also superior to other QP solvers written with MPC applications in mind.

(ii) Second, we want to adapt the proposed online active set method in order to make it

suitable for sequential quadratic programming for solving nonlinear model predictive

control problems. The main ideas of this extension were already described in Chapter 4

and will be implemented soon. Moreover, extending the applicability of our method

to (not strictly) convex quadratic or linear programs seems to be possible and useful.

(iii) Finally, the simulations of the Diesel engine presented in Chapter 6 will form the basis

of closed-loop real-world experiments, scheduled for the end of the year 2006. Besides

performance improvements like reduction of NOx emissions or soot formation, these

tests will hopefully give further insight into practical requirements for making model

predictive control a viable control strategy for fast applications in the millisecond

range.

90

Appendix A

Mathematical Basics

In order to ease the presentation some basic definitions and results are collected in this

appendix, instead of giving them where they first occur. Since it is assumed that the reader

is familiar with all concepts they are stated without further explanation.

Definition A.1 (convex set): A set X ⊆ R
n is called convex iff

τx1 + (1− τ)x2 ∈ X (A.1)

for all x1, x2 ∈ X and all τ ∈ [0, 1] ⊂ R. �

Definition A.2 (convex function): A real-valued function f : D ⊆ R
n → R is called

convex iff D is a convex set and

f (τx1 + (1− τ)x2) ≤ τf (x1) + (1− τ)f (x2) (A.2)

for all x1, x2 ∈ D and all τ ∈ [0, 1] ⊂ R. �

Definition A.3 (polyhedron): A set X ⊆ R
n is called polyhedron iff there exist a matrix

A ∈ R
m×n and a vector b ∈ R

m such that

X =
{
x ∈ R

n
∣
∣ Ax ≤ b

}
. (A.3)

�

Definition A.4 (range space and null space of a matrix): Let a matrix A ∈ R
m×n be

given.

(i) Its range space (or image) imA is the vector space spanned by the columns of A,

i.e.

imA
def
=
{
Ax

∣
∣ x ∈ R

n
}
⊆ R

m . (A.4)

(ii) Its null space (or kernel) kerA is defined as

kerA
def
=
{
x ∈ R

n
∣
∣ Ax =

� }
. (A.5)

�

91

Appendix A. Mathematical Basics

Theorem A.1 (Cholesky decomposition): For every matrixA ∈ Sn�0 there exists a unique

upper triangular matrix R ∈ R
n×n with positive diagonal entries such that

A = R′R . (A.6)

Matrix R, or its transposed L
def
= R′, is called Cholesky factor of A. �

Proof: Can be found in [46, p. 143]. �

Theorem A.2 (QR factorisation): Let a matrix A ∈ R
m×n with m ≥ n be given. Then

the following holds:

(i) There exist an orthonormal matrix V ∈ R
m×m and an upper triangular matrix U ∈

R
n×n such that

A = V

(
U

�

)

. (A.7)

(ii) If A has full row rank there exist an orthonormal matrix V ∈ R
m×n and an upper

triangular matrix U ∈ R
n×n with positive diagonal entries such that

A = V U . (A.8)

This factorisation is unique. �

Proof: Can be found in [46, p. 223–230]. �

Definition A.5 (condition number of a matrix): For every matrix A ∈ R
m×n, A 6=

�
,

the condition number condA is defined as

condA
def
=
∥
∥A†

∥
∥

2

∥
∥A
∥
∥

2
. (A.9)

Therein A† denotes the so-called pseudoinverse of A which coincide with A−1 if the matrix

A is invertible (see [41, p. 170–172]). �

Definition A.6 (big-O notation): For every scalar function f : N→ N we define

O(f)
def
=
{
g : N→ N

∣
∣ ∃α, β, n0 ∈ N : g(n) ≤ αf(n) + β ∀n ≥ n0

}
(A.10)

as the set of all integer functions which are asymptotically dominated by f . �

92

Appendix B

Implementation Overview

Now we give a concise overview about the practical implementation of the proposed online

active set strategy: the software module OASES. It is thought to be a guideline for actu-

ally setting up and solving sequences of strictly convex quadratic programs with OASES;

theoretical issues and numerical results were addressed in the main part of this thesis.

B.1 Software Module OASES

The software module OASES is written in an object-oriented manner in C++ and comes

along with the fully commented1 files listed in Table B.1. Besides some standards libraries

no further software packages are required. Core of the module is the QProblem class which

is able to store, process and solve strictly quadratic programs using the online active set

strategy; it makes use of several auxiliary classes.

Table B.1: Complete file list of the software module OASES.

File name: Description:

OASES QProblem.cpp/hpp/ipp
QProblem class for using the online active set strategy

for strictly convex QPs

OASES SubjectTo.cpp/hpp/ipp
QProblem SubjectTo class for managing working sets

of constraints or variables of a QProblem

OASES Bounds.cpp/hpp/ipp
QProblem Bounds class for managing working sets

of variables of a QProblem

OASES Constraints.cpp/hpp/ipp
QProblem Bounds class for managing working sets

of constraints of a QProblem

OASES Indexlist.cpp/hpp/ipp

QProblem Indexlist class for managing index lists

of constraints or bounds within the

QProblem SubjectTo class

OASES Utils.cpp/hpp some utilities for working with the QProblem class

OASES main.cpp main function sample for testing the QProblem class

1All comments can be interpreted by the documentation system doxygen [80].

93

Appendix B. Implementation Overview

B.2 OASES in a Nutshell

The user interacts with the OASES module solely via the QProblem class. So, for setting
up a quadratic program an instance of the QProblem class has to be created. This can be
done by different constructors, e.g. the following

QProblem::QProblem(const double* H, const double* A, const double* g,

const double* lb, const double* ub,

const double* lbA, const double* ubA,

int nV, int nC);

which takes the (positive definite) Hessian matrix H, the constraint matrix A, the gradient

vector g, the lower and upper bound vectors lb and ub, the lower and upper constraints’

bound vectors lbA and ubA, the number of variables nV and the number of constraints nC

of the quadratic program to be solved. All these data must be stored in arrays of type

double (matrices stored row-wise in an one-dimensional array). A further constructor for

QPs whitout constraints exists, as well as constructors for reading the data directly from

ASCII files.

After setting up the first quadratic program it has to be initialised via the function:

int QProblem::init(int& nWSR, bool objFLAG, double& cputime);

It initialises all internal data structures and solves the quadratic program using the tech-

niques described in Section 4.4. The argument nWSR specifies the maximum number of

working set recalculations to be performed during the initial homotopy (on output in con-

tains the number of working set recalculations actually performed). objFLAG indicates if

also the optimal objective function value shall be calculated; cputime contains (on output)

the CPU time required for the whole initialisation. The functions init() returns a status

code which indicates if the initialisation was successful. Alternatively, the function solve()

provides an interface for solving the quadratic program with a different solver (e.g. qpsol).

If not only a single quadratic program but a whole sequence of QPs shall be solved—as it
is the usual situation for a MPC problem—the next QP can be solved using the function:

int QProblem::hotstart(const double* g_new,

const double* lb_new, const double* ub_new,

const double* lbA_new, const double* ubA_new,

int& nWSR, bool objFLAG, double& cputime);

The next QP is specified by passing its gradient vector g new, its lower and upper bound

vectors lb new and ub new as well as lower and upper constraints’ bound vectors lbA new

and ubA new. It is solved by means of the online active set strategy using at most nWSR

working set recalculations. objFLAG indicates if also the optimal objective function value

shall be calculated; cputime contains (on output) the CPU time required for nWSR steps

along the homotopy path. The function hotstart() returns a status code which indicates,

e.g., if the optimal solution of the next QP could be found within the given number of

working set recalculations or if an error occured. Again, special (overloaded) variants for

QPs whitout constraints or for reading the data of the next QP directly from ASCII files

exist.

94

B.2. OASES in a Nutshell

Besides this main functionality, several functions for obtaining status information are im-
plemented. Among them

double* QProblem::getPrimalSolution ()

double* QProblem::getDualSolution ()

double QProblem::getObjVal()

for getting the primal-dual solution pair
(
xopt, yopt

)
and the optimal objective function

value or

bool QProblem::isInitialised()

bool QProblem::isSolved()

bool QProblem::isInfeasible()

for asking if the current QP was initialised, solved or found to be infeasible. Moreover,

several output functions are available.

We conclude by presenting a very simple example for illustrating the handling of the OASES
module:

#include "OASES_QProblem.hpp"

int main()

{

// data of first QP

double H[2*2] = { 1.0, 0.0, 0.0, 0.5 };

double A[1*2] = { 1.0, 1.0 };

double g[2] = { 1.0, 1.0 };

double lb[2] = { 0.5, -2.0 };

double ub[2] = { 5.0, 2.0 };

double lbA[1] = { -1.0 };

double ubA[1] = { 2.0 };

// data of second QP

double g_new[2] = { 1.0, 1.0 };

double lb_new[2] = { 0.0, -1.0 };

double ub_new[2] = { 5.0, -0.5 };

double lbA_new[1] = { -2.0 };

double ubA_new[1] = { 1.0 };

// setting up first QP

QProblem testExample(H,A,g,lb,ub,lbA,ubA, 2,1);

// solve first QP

double cputime;

int nWSR = 10;

testExample.init(nWSR,true,cputime);

// solve second QP

nWSR = 10;

testExample.hotstart(g_new,lb_new,ub_new,lbA_new,ubA_new, nWSR,true,cputime);

return 0;

}

95

96

Appendix C

Fast Nonlinear Model Predictive

Control of Gasoline Engines

As an example for NMPC applications we reprint a publication recently presented at the

IEEE International Conference on Control Applications 2006 in Munich [31].

Not included in this online version (for copyright reasons)!

C.1 Introduction

C.2 Model Description

C.3 NMPC Problem Formulation

C.4 Algorithm

C.5 Simulation Results

C.6 Conclusions and Future Work

Acknowledgements

97

98

Bibliography

[1] A.A. Anda and H. Park. Fast plane rotations with dynamic scaling. SIAM Journal on

Matrix Analysis and Applications, 15(1):162–174, 1994.

[2] M. Athans and P.L. Falb. Optimal Control. McGraw-Hill, New York, 1966.

[3] R.A. Bartlett and L.T. Biegler. QPSchur: A dual, active set, schur complement method

for large-scale and structured convex quadratic programming algorithm. Optimization

and Engineering, 7:5–32, 2006.

[4] R.A. Bartlett, L.T. Biegler, J. Backstrom, and V. Gopal. Quadratic programming

algorithms for large-scale model predictive control. Journal of Process Control, 12:775–

795, 2002.

[5] R.A. Bartlett, A. Wächter, and L.T. Biegler. Active set vs. interior point strategies for

model predicitve control. In Proceedings of the American Control Conference, pages

4229–4233, Chicago, Il, 2000.

[6] A. Bemporad. Hybrid Toolbox – User’s Guide, 2004.

[7] A. Bemporad and C. Filippi. Suboptimal explicit receding horizon control via approx-

imate multiparametric quadratic programming. Journal of Optimization Theory and

Applications, 117(1):9–38, 2003.

[8] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear quadratic

regulator for constrained systems. Automatica, 38:3–20, 2002.

[9] A. Bemporad, M. Morari, and N.L. Ricker. Model Predictive Control Toolbox, 2005.

[10] A.B. Berkelaar, K. Roos, and T. Terkaly. Recent Advances in Sensitivity Analysis

and Parametric Programming, chapter 6: The Optimal Set and Optimal Partition

Approach to Linear and Quadratic Programming. Kluwer Publishers, Dordrecht, 1997.

[11] M.J. Best. Applied Mathematics and Parallel Computing, chapter An Algorithm for the

Solution of the Parametric Quadratic Programming Problem, pages 57–76. Physica-

Verlag, Heidelberg, 1996.

[12] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.

SIAM, Philadelphia, 2001.

[13] R.R. Bitmead, M. Gevers, and V. Wertz. Adaptive optimal control: the thinking man’s

GPC. Prentice Hall, Sydney, 1990.

99

Bibliography

[14] H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schlöder. Efficient direct multiple

shooting in nonlinear model predictive control. In F. Keil, W. Mackens, H. Voß, and

J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages

218–227, Berlin, 1999. Springer.

[15] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of optimal

control problems. In Proceedings 9th IFAC World Congress Budapest, pages 243–247.

Pergamon Press, 1984.

[16] N. L. Boland. A dual-active-set algorithm for positive semi-definite quadratic program-

ming. Mathematical Programming, 78:1–27, 1997.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge,

2004.

[18] E.F. Camacho and C. Bordons. Model Predictive Control. Springer, London, 2004.

[19] A.M. Cervantes, S. Tonelli, A. Brandolin, J.A. Bandoni, and L.T. Biegler. Large-

scale dynamic optimization for grade transitions in a low density polyethylene plant.

Computers and Chemical Engineering, 26(2):227–237, 2002.

[20] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control

scheme with guaranteed stability. Automatica, 34(10):1205–1218, 1998.

[21] J.W. Daniel, W.B. Gragg, L. Kaufman, and G.W. Steward. Reorthogonalization and

stable algorithms for updating the gram-schmidt QR factorization. Mathemathics of

Computation, 30(136):772–795, 1976.

[22] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

[23] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis,

Universität Heidelberg, 2001. http://www.ub.uni-heidelberg.de/archiv/1659/.

[24] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for nonlinear

optimization in optimal feedback control. SIAM Journal on Control and Optimization,

43(5):1714–1736, 2005.

[25] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H.G. Bock, E.D. Gilles,

and J.P. Schlöder. An efficient algorithm for nonlinear model predictive control of

large-scale systems. Part I: Description of the method. Automatisierungstechnik,

50(12):557–567, 2002.

[26] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H.G. Bock, E.D. Gilles,

and J.P. Schlöder. An efficient algorithm for nonlinear model predictive control of large-

scale systems. Part II: Application to a distillation column. Automatisierungstechnik,

51(1):22–29, 2003.

[27] W.S. Dorn. Duality in quadratic programming. Quarterly of Applied Mathematics,

18:155–162, 1960.

[28] dSPACE. Homepage. http://www.dspace.com, 2006.

100

Bibliography

[29] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy to overcome

the limitations of explicit mpc. International Journal of Robust and Nonlinear Control.

(submitted).

[30] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy for fast parametric

quadratic programming in MPC applications. In Proceedings of the IFAC Workshop

on Nonlinear Model Predictive Control for Fast Systems, Grenoble, 2006.

[31] H.J. Ferreau, G. Lorini, and M. Diehl. Fast nonlinear model predictive control of

gasoline engines. In Proceedings of the IEEE International Conference on Control

Applications, Munich, pages 2754–2759, 2006.

[32] A.V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear programming.

Academic Press, New York, 1983.

[33] R. Fletcher. A general quadratic programming algorithm. J. Inst. Math. Appl., 7:76–91,

1971.

[34] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 2nd edition, 1987.

[35] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research

Logistics Quarterly, 3:95–110, 1956.

[36] P.E. Gill, G.H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix

factorizations. Mathematics of Computation, 28(126):505–535, 1974.

[37] P.E. Gill, N.I.M. Gould, W. Murray, M.A. Saunders, and M.H. Wright. A weighted

gram-schmidt method for convex quadratic programming. Mathematical Program-

ming, 30:176–195, 1984.

[38] P.E. Gill and W. Murray. Numerically stable methods for quadratic programming.

Mathematical Programming, 14:349–372, 1978.

[39] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Procedures for optimization

problems with a mixture of bounds and general linear constraints. ACM Transactions

on Mathematical Software, 10(3):282–298, 1984.

[40] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Inertia-controlling methods

for general quadratic programming. SIAM Review, 33(1):1–36, 1991.

[41] P.E. Gill, W. Murray, and M.H. Wright. Numerical Linear Algebra and Optimization,

volume 1. Addison-Wesley, New York, 1991.

[42] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic Press,

London, 1999.

[43] W.J. Givens. Numerical computation of the characteristic values of a real symmetric

matrix. Technical Report 1574, Oak Ridge National Laboratory, 1954.

[44] D. Goldfarb. Matrix factorizations in optimization of nonlinear functions subject to

linear constraints. Mathematical Programming, 10:1–31, 1975.

101

Bibliography

[45] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex

quadratic programs. Mathematical Programming, 27:1–33, 1983.

[46] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, 3rd edition, 1996.

[47] S. Hammarling. A note on modifications to the givens plane rotation. J. Inst. Maths

Applics, 13:215–218, 1974.

[48] R.J. Hanson and T. Hopkins. Algorithm 830: Another visit with standard and mod-

ified Givens transformations and a remark on Algorithm 539. ACM Transactions on

Mathematical Software, 30(1):86–94, 2004.

[49] M.R. Hestenes. Calculus of variations and optimal control theory. Wiley, New York,

1966.

[50] A.U. Idnani. Numerically stable dual projection methods for solving positive definite

quadratic programs. PhD thesis, City College of New York, 1980.

[51] T.A. Johansen and A. Grancharova. Approximate explicit constrained linear model

predictive control via orthogonal search tree. IEEE Trans. Automatic Control, 48:810–

815, 2003.

[52] Merten Jung. Mean-Value Modelling and Robust Control of the Airpath of a Tur-

bocharged Diesel Engine. PhD thesis, University of Cambridge, 2003.

[53] R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions

of the ASME–Journal of Basic Engineering, 82:35–45, 1960.

[54] W. Karush. Minima of functions of several variables with inequalities as side conditions.

Master’s thesis, Department of Mathematics, University of Chicago, 1939.

[55] S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback laws for a general class

of constrained discrete-time systems: Stability and moving-horizon approximations.

Journal of Optimization Theory and Applications, 57(2):265–293, 1988.

[56] V. Klee and G.J. Minty. How good is the simplex algorithm? In O. Shisha, editor,

Inequalities, volume III, pages 159–175. Academic Press, New York, 1972.

[57] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceed-

ings of the Second Berkeley Symposium on Mathematical Statistics and Probability,

Berkeley, 1951. University of California Press.

[58] L. Ljung. System identification. Prentice Hall, Upper Saddle River, N.J., 1999.

[59] The MathWorks. Homepage. http://www.mathworks.com/, 2006.

[60] D. Q. Mayne and S. Rakovic. Optimal control of constrained piecewise affine discrete-

time systems. Computational Optimization and Applications, 25:167–191, 2003.

[61] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model

predictive control: stability and optimality. Automatica, 26(6):789–814, 2000.

102

Bibliography

[62] NAG. Fortran Library Routine Document E04NAF, 1991.

[63] NAG. Fortran Library Routine Document E04NFF/E04NFA, 1999.

[64] G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing receding-horizon control of non-

linear time varying systems. IEEE Transactions on Automatic Control, AC-43(7):1030–

1036, 1998.

[65] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, Heidelberg, 1999.

[66] P. Ortner. MPC for a diesel engine airpath using an explicit approach for constraint

systems. Master’s thesis, Institut für Design und Regelung mechatronischer Systeme,

Universität Linz, 2005.

[67] P. Ortner, P. Langthaler, J.V.G. Ortiz, and L. del Re. MPC for a diesel engine air

path using an explicit approach for constraint systems. In Proceedings of the IEEE

International Conference on Control Applications, Munich, pages 2760–2765, 2006.

[68] G. Pannocchia, J.B. Rawlings, and S.J. Wright. The partial enumeration method

for model predictive control: Algorithm and examples. Technical Report 2006-01,

Texas-Wisconsin Modeling and Control Consortium, 2006.

[69] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules. Nonlinear model predictive

control using neural networks. IEEE Control Systems Magazine, 20:53–62, 2000.

[70] L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko. The Mathe-

matical Theory of Optimal Processes. Wiley, Chichester, 1962.

[71] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calculations.

In G.A. Watson, editor, Numerical Analysis, Dundee 1977, volume 630 of Lecture

Notes in Mathematics, Berlin, 1978. Springer.

[72] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control technology.

Control Engineering Practice, 11:733–764, 2003.

[73] C.V. Rao, S.J. Wright, and J.B. Rawlings. Application of interior-point methods to

model predictive control. Journal of Optimization Theory and Applications, 99:723–

757, 1998.

[74] P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic regulation. IEEE

Transactions on Automatic Control, 43(8):1163–1169, 1998.

[75] J. Spjøtvold, E.C. Kerrigan, C.N. Jones, T.A. Johansen, and P. Tøndel. Conjectures on

an algorithm for convex parametric quadratic programs. Technical report, Department

of Engineering, University of Cambridge, 2004.

[76] M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with state and

control inequality constraints. In Proceedings of the 26th IEEE conference on decision

and control, Los Angeles, pages 761–762, 1987.

103

Bibliography

[77] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-parametric

quadratic programming and explicit mpc solutions. Automatica, 39:489–497, 2003.

[78] P. Tøndel, T.A. Johansen, and A. Bemporad. Computation and approximation of

piecewise affine control laws via binary search trees. Automatica, 39:945–950, 2003.

[79] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via collocation and

non-linear programming. International Journal on Control, 21:763–768, 1975.

[80] D. van Heesch. Doxygen homepage. http://www.doxygen.org.

[81] R. J. Vanderbei. LOQO: An interior point code for quadratic programming. Optimiza-

tion Methods and Software, 11:451–484, 1999.

[82] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with

Applications in Process Engineering. PhD thesis, Carnegie Mellon University, 2002.

[83] X. Wang. Resolution of ties in parametric quadratic programming. Master’s thesis,

University of Waterloo, Ontario, Canada, 2004.

[84] A.G. Wills, D. Bates, A.J. Fleming, B. Ninness, and S.O.R. Moheimani. Application of

MPC to an active structure using sampling rates up to 25kHz. 44th IEEE Conference

on Decision and Control and European Control Conference ECC’05, Seville, 2005.

[85] R.B. Wilson. A simplicial algorithm for concave programming. PhD thesis, Harvard

University, 1963.

[86] L. Wirsching. An SQP algorithm with inexact derivatives for a direct multiple shooting

method for optimal control problems. Master’s thesis, University of Heidelberg, 2006.

[87] L. Wirsching, H. G. Bock, and M. Diehl. Fast NMPC of a chain of masses connected by

springs. In Proceedings of the IEEE International Conference on Control Applications,

Munich, pages 591–596, 2006.

[88] P. Wolfe. The simplex method for quadratic programming. Econometrica, 27:382–398,

1959.

[89] P. Wolfe. A duality theorem for non-linear programming. Quarterly of Applied Math-

ematics, 19:239–244, 1961.

[90] W.M. Wonham. Linear Multivariable Control: a Geometric Approach. Springer, Hei-

delberg, 1979.

[91] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications, Philadelphia,

1997.

[92] E. Zafiriou. Robust model predictive control of processes with hard constraints. Com-

puters & Chemical Engineering, 14(4–5):359–371, 1990.

104

Index

A

active set, 19

active set methods, 27

airpath, 79

algebraic Riccati equation, 13

autonomous, 7

B

backward substitution, 32

big-O notation, 92

blocking constraint, 28, 29, 35, 42

bound, 16, 44

C

calculus of variations, 9

Cholesky decomposition, 32, 46, 92

closed-loop stability, 12

complementary slackness, 37

condensing, 15

condition number, 92

confidence region, 44

constraint, 4, 44

active constraint, 19

active constraints matrix, 45

constraint matrix, 16

constraint vector, 16

inactive constraint, 19

linear constraints, 8

constraint vector, 16

constraints, 4

continuity constraints, 10

control action, 3

control parameterisation, 10

controlled variables, 3

controls, 3

convex function, 91

convex set, 91

critical region, 22, 39

cycling, 31, 35

D

dead time, 6

degenerated points, 31

dense matrices, 66

Diesel engine, 79

differential algebraic equation, 4

direct collocation, 10

direct multiple shooting, 10, 15

direct single shooting, 10

disturbances, 6

dSPACE, 88

dual step direction, 42, 46

duality, 17

E

emissions, 79

engine control, 1, 79

engine speed, 81

equidistant, 6

exhaust gas recirculation, 79

explicit approach, 25, 84

F

feasibile QP, 16

feasibility measure, 66

feasibility problem, 30

feasible set, 16, 18

feedback, 3

fill in, 50

first principles model, 4

fixed variable, 44

floating-point operation, 62

forward substitution, 32

free variable, 44

full step, 28, 35

105

Index

G

Gaussian elimination, 49

Givens plane rotation, 48

fast plane rotation, 49

gradient step direction, 46

gradient vector, 16

H

Hessian matrix, 16

homotopy, 40

homotopy step length, 41, 42

I

identified model, 4

image, 91

impulse response model, 4

indefinite quadratic programs, 32

index list, 49

indirect methods, 9

infeasibility handling, 60

infeasible, 16

infinite horizon, 13

initial guess, 28

initialisation, 30, 54

interior point methods, 37

K

kernel, 91

KKT conditions, 19, 37

KKT matrix, 20, 55

L

linear identification, 79

linear independence check, 56

linear independence constraint qualifica-

tion, 20

linear model predictive control, 8

linear process model, 8

linear program, 25

linear programming, 28

linear-quadratic regulator, 13

long steps, 89

LTI model, 8

M

manifold absolute pressure, 81

manipulated variables, 3

mass air flow, 81

Matlab/Simulink, 83

matrix updates, 32, 48, 62

mean value model, 79

measurement error, 61

measurement noise, 6

memory requirements, 66

model predictive control, 3

model-plant mismatch, 5

multi-parametric quadratic program, 25

N

neural network models, 4

nonlinear, 7

nonlinear model predictive control, 7, 67,

88, 97

nonlinear program, 15

null space, 31, 91

null space method, 32

O

objective function, 4

Lagrange term, 4

Mayer term, 4

quadratic objective function, 9

online active set strategy, 39

open-loop, 5

optimal active set, 19

optimal control problem, 5

ordinary differential equation, 8

P

parametric quadratic program, 14, 20

parametric quadratic programming, 20

partial differential equations, 79

partial enumeration, 26

partial step, 35

Phase I, 30, 34, 43

piecewise constant, 10

piecewise linear, 10

polyhedron, 91

Pontryagin’s maximum principle, 9

positive definite, 17

positive semi-definite, 16

prediction error approach, 79

prediction horizon, 4

106

Index

primal step direction, 42, 46

primal-dual step, 35

primal-dual step direction, 46, 65

process inputs, 3

process model, 3

process outputs, 3

process parameters, 3

process states, 3

pseudoinverse, 92

Q

QR factorisation, 31, 92

quadratic program, 10, 16

bounded from below, 16

convexity, 16

dual quadratic program, 17

equality constrained QP, 27

infeasibility, 16

strict convexity, 17

unboundedness, 16

unconstrained QP, 31

R

range space, 33, 91

range space method, 33

real-time, 43

receding horizon control, 3

reference tracking, 9

reference value, 9

regulating to the origin, 9

restricted null space, 46

reverse lower triangular matrix, 46

runtime complexity, 62

S

sampling instant, 3

sampling time, 6

Schur complement, 35

sequential quadratic programming, 15, 68

set of feasible parameters, 21

set of fixed variables, 44

set of free variables, 44

simplex method, 28

stability, 12

state-space representation, 4

steady-state, 8, 12

step response model, 4

T

terminal penalty weight matrix, 12

tie, 57

dual tie, 57

primal tie, 57

primal-dual ties, 57

time-invariant, 7

TQ factorisation, 46

trajectory tracking, 9

U

unconstrained minimum, 34

V

variable geometry turbocharger, 79

W

warm start, 30, 37, 39

white noise, 83

working set, 19

of fixed variables, 44

of free variables, 44

working set complement, 19

107

108

	Front page
	Zusammenfassung
	Abstract
	Acknowledgements
	Notation
	Introduction
	Theoretical Background and Motivation
	Model Predictive Control
	Linear Model Predictive Control
	Problem Discretisation
	Closed-Loop Stability
	Condensing into a Smaller Scale Parametric Quadratic Program

	Quadratic Programming
	Parametric Quadratic Programming
	Explicit (Offline) Solution of Parametric Quadratic Programs

	Existing Methods for Solving Quadratic Programs
	Primal Active Set Methods
	Null Space Method
	Range Space Method

	Dual Active Set Methods
	Interior Point Methods

	An Online Active Set Strategy for Model Predictive Control
	Main Idea
	Real-Time Variant
	Implementation Details
	Bounds and Constraints
	Null Space Approach
	Matrix Updates

	Initialisation
	Degeneracy Handling
	Linear Dependence of Constraints
	Infeasibility

	Computational Complexity
	Runtime Complexity
	Memory Requirements

	Further Refinements and Extensions
	Step Length Determination
	Extension to Sequential Quadratic Programming

	Numerical Tests: Chain of Spring Connected Masses
	Model Description and Problem Formulation
	Numerical Results
	Summary of the Results

	Numerical Tests: Real-World Diesel Engine
	Model Description and Problem Formulation
	Numerical Results
	Summary of the Simulation Results
	Real-World Experiments

	Conclusions and Outlook
	Mathematical Basics
	Implementation Overview
	Software Module OASES
	OASES in a Nutshell

	Fast Nonlinear Model Predictive Control of Gasoline Engines
	Introduction
	Model Description
	NMPC Problem Formulation
	Algorithm
	Simulation Results
	Conclusions and Future Work

	Bibliography
	Index

